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Abstract Many programming systems go beyond programming languages. Programming is usually done
in the context of a stateful environment, beyond just writing code, by interacting with a system through a
graphical user interface. Much research effort focuses on building programming systems that are easier to
use, accessible to non-experts, moldable and/or powerful, but such efforts are often disconnected. They are
informal, guided by the personal vision of the authors and thus are only evaluable and comparable on the
basis of individual experience using them. They fail to form a coherent body of research, since it is unclear
how to build on past work. In the research world, much has been said and done that allows comparison of
programming languages, yet no similar theory exists for programming systems; we believe that programming
systems deserve a theory too. We examine some influential past programming systems and review their stated
design principles, technical capabilities, and styles of user interaction. We propose a framework of technical
dimensions which capture the underlying system characteristics and provide a means for conceptualizing and
comparing programming systems. Since these characteristics may be compared or advanced independently, it
should be easier to talk about programming systems in a way that can be shared and constructively debated
rather than relying solely on personal impressions. By providing foundations for more systematic research
in this area, we can help the designers of future programming systems to stand, at last, on the shoulders of
giants.

NOTE TO REVIEWERS: The main contribution of the paper is a comprehensive survey of 21 design
dimensions of programming systems. Each one comes with detailed discussion, including known uses, to
properly motivate it. We also elect to include the full set of these dimensions in the main text. While these
two aspects do make the paper longer than the recommended page limit, we prefer to err on this side than to
privilege certain dimensions and relegate others to an appendix. We invite the reader to focus on the ones
that best suit their interest.
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Technical Dimensions of Programming Systems

A systematic presentation removes ideas from the ground that made them grow
and arranges them in an artificial pattern.
— Paul Feyerabend, The Tyranny of Science, Polity Press (2011)

Irony is said to allow the artist to continue his creative productionwhile immersed
in a sociocultural context of which he is critical.
— Emmanuel Petit, Irony or, the Self-Critical Opacity of Postmodernist Architecture,
Yale (2013)

1 Introduction

Many forms of software have been developed to enable programming. The classic form
consists of a programming language, a text editor to enter source code, and a compiler
to turn it into an executable program. Instances of this form are differentiated by the
syntax and semantics of the language, along with the implementation techniques in the
compiler or runtime environment. Since the advent of graphical user interfaces (GUIs),
programming languages can be found embedded within graphical environments that
increasingly define how programmers work with the language (by directly supporting
debugging or refactoring, for instance.) Beyond this, the rise of GUIs also permits
diverse visual forms of programming, including visual languages and GUI-based end-
user programming tools. This paper relies on, and encourages, a shift of attention
from programming languages to the more general notion of “software that enables
programming”—in other words, programming systems.

A programming system may include tools, protocols, notations, and languages. It is
a software artifact that makes it possible to construct programs, debug them, and turn
them into operational, maintained, and evolvable artifacts running on appropriate
hardware. This notion covers classic programming languages together with their
editors, debuggers, compilers, and other tools. Yet it is intentionally broad enough
to accommodate image-based programming environments like Smalltalk, operating
systems like UNIX, and hypermedia authoring systems like Hypercard, in addition to
various other examples we will mention.

1.1 What is the problem?

There is a growing interest in broader forms of programming systems, both in the
programming research community and in industry. On the one hand, researchers are
increasingly studying topics such as programming experience and live programming that
require considering not just the language, but further aspects of a given system. On the
other hand, commercial companies are building new programming environments like
Replit1 or low-code programming tools like Dark2 and Glide.3 Yet, such topics remain

1 https://replit.com/
2 https://darklang.com/
3 https://www.glideapps.com/
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at the sidelines of mainstream programming research. While programming languages
are a well-established concept, analysed and compared in a common vocabulary, no
similar foundation exists for the wider range of programming systems.

The academic research on programming suffers from this lack of common vocabulary.
While we can thoroughly assess programming languages, as soon as we add interaction
or graphics into the picture, we often get stuck on how the resulting system is vaguely
“cool” or “interesting”. Moreover, when designing new systems, inspiration is often
drawn from the same few standalone sources of ideas. These might be influential
past systems like Smalltalk, programmable end-user applications like spreadsheets, or
motivational illustrations by thinkers like Victor [66].

Instead of forming a solid body of work, the ideas that emerge are difficult to relate
to each other. Similarly, the research methods used to study programming systems
lack the more rigorous structure of programming language research methods. They
tend to rely on singleton examples, which demonstrate the author’s ideas, but are
inadequate methods for comparing new ideas with the work of others. This makes it
hard to build on top and thereby advance the state of the art.

Studying programming systems is not merely about taking a programming lan-
guage and looking at the tools that surround it. It presents a paradigm shift to a
perspective that is, at least partly, incommensurable with that of languages. When
studying programming languages, everything that matters is in the program code;
when studying programming systems, everything that matters is in the interaction
between the programmer and the system. As documented by Gabriel [21], looking
at a system from a language perspective makes it impossible to think about concepts
that arise from interaction with a system, but are not reflected in the language. Thus,
we must proceed with some caution. As we will see, when we talk about Lisp as a
programming system, we mean something very different from a parenthesis-heavy
programming language!

1.2 Contributions

We propose a new common language as an initial, tentative step towards more pro-
gressive research on programming systems. Our set of “Technical Dimensions for
Programming Systems” seeks to break down the holistic view of systems along various
specific “axes” inspired by the approach of the Cognitive Dimensions of Notation [24].
While not strictly quantitative, we have designed them to be narrow enough to be
comparable, so that we may say one system has more or less of a property than another.
Generally, we see the various possibilities as tradeoffs and are reluctant to assign them
“good” or “bad” status. If the framework is to be useful, then it must encourage some
sort of rough consensus on how to apply it; we expect it will be more helpful to agree
on descriptions of systems first, and settle normative judgements later.

The set of dimensions can be understood as a map of the design space of program-
ming systems (Figure 1). Past and present systems will serve as landmarks, and with
enough of them, unexplored or overlooked possibilities will reveal themselves. So
far, the field has not been able to establish a virtuous cycle of feedback; it is hard for
practitioners to situate their work in the context of others’ so that subsequent work
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can improve on it. Our aim is to provide foundations for the study of programming
systems that would allow such development.

1. We present the dimensions in detail, organised into related clusters: interaction,
notation, conceptual structure, customizability, automation, errors, and adoptability.

2. We define these dimensions by reference to landmark programming systems of the
past, and discuss any relationships between them.

3. We demonstrate the salience of these dimensions by applying them to example
systems from both the past and present. We situate some experimental systems as
explorations at the frontier of certain dimensions.

2 Related work

While we do have new ideas to propose, part of our contribution is integrating a wide
range of existing concepts under a common umbrella. This work is spread out across
different domains, but each part connects to programming systems or focuses on a
specific characteristic they may have.

2.1 Which “systems” are we talking about?

The programming systems that shape our framework come from a few recognisable
clusters:

“Platforms” supporting arbitrary software ecosystems: UNIX, Lisp, Smalltalk, the
Web
“Applications” targeted to a specific domain: spreadsheets
Mixed aspects of platform and application: HyperCard, Boxer, Flash, and program-
ming language workflows

Richard Gabriel noted a “paradigm shift” [21] from the study of systems to the
study of languages in computer science, which informs our distinction here. One
consequence of the change is that a language is often formally specified apart from
any specific implementations, while systems resist formal specification and are often
defined by an implementation. We do, however, intend to recognize programming
language implementations as a small region of the space of possible systems (Figure 1).
Hence we refer to the interactive programming system aspects of languages, such as
text editing and command-line workflow.

Our “system” concept is mostly technical in scope, with occasional excursions as in
“Adoptability” (Section 4.7). This contrasts with the more socio-political focus found
in [64]. It overlaps with Kell’s conceptualization of UNIX, Smalltalk, and Operating
Systems generally [33], and we have ensured that UNIX has a place in our framework.
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Figure 1 A speculative sketch of one 2-dimensional slice of the space of possible systems.

2.2 Industry and research interest in programming systems

There is renewed interest in programming systems in both industry and research. In
industry we see:

Computational notebooks such as Jupyter4 that make data analysis more amenable
to scientists by combining code snippets and their numerical or graphical output in
a convenient document format.
“Low code” end-user programming systems that present a simplified GUI for
developing applications. One example is Coda,5 which combines tables, formulas,
and scripts to enable non-technical people to build “applications as a document”.
Specialized programming systems that augment a specific domain. For example
Dark, which creates cloud API services with a “holistic” programming experience
including a language and direct manipulation editor with near-instantaneous
building and deployment.
Even for general purpose programming with conventional tools, systems like Replit
have demonstrated the benefits of integrating all needed languages, tools, and user
interfaces into a seamless experience available from a browser with no setup.

In research, there are an increasing number of explorations of the possibilities of
full programming systems:

Subtext [12], which combines code with its live execution in a single editable
representation.

4 https://jupyter.org/
5 https://coda.io/welcome
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Sketch-n-sketch [27], which can synthesize code by direct manipulation of its
outputs.
Hazel [48], a live functional programming environment featuring typed holes
which enable execution of incomplete or type-erroneous programs.

Several research venues investigate programming systems:

UIST (ACM Symposium on User Interface Software and Technology)
VL/HCC (IEEE Symposium on Visual Languages and Human-Centric Computing)
The LIVE programming workshop at SPLASH
The PX (Programming eXperience) workshop at 〈Programming〉

2.3 Characteristics already identified elsewhere

There are several existing projects identifying characteristics of programming systems.
Some of these revolve around a single one, such as levels of liveness [63], or plurality
and communicativity [34]. Others propose, as we do here, an entire collection:

Memory Models of Programming Languages [58] identifies the “everything is an X”
metaphors underlying many programming languages.
The Design Principles of Smalltalk [30] documents the philosophical goals and dicta
used in the design of Smalltalk.
The “Gang of Four” Design Patterns [22] names and catalogues specific tactics within
the codebases of software systems.
The Cognitive Dimensions of Notation [24] introduces a common vocabulary for soft-
ware’s notational surface and shows how they trade off and affect the performance
of certain types of tasks.

Of these sources, the latter two bear the most obvious influence on our proposal.
Our framework of “technical dimensions” continues the approach of the Cognitive
Dimensions to the “rest” of a system beyond its notation. Our individual dimensions
naturally fall under larger clusters that we present in a regular format, similar to
the presentation of the classic Design Patterns. As for characteristics identified by
others, part of our contribution is to integrate them under a common umbrella:
liveness, pluralism, and uniformity metaphors (“everything is an X”) are incorporated
as dimensions already identified by the related work.

We follow the attitude of Evaluating Programming Systems [13] in distinguishing
our work from HCI methods and empirical evaluation. We are generally concerned
with characteristics that are not obviously amenable to statistical analysis (e.g. min-
ing software repositories) or experimental methods like controlled user studies, so
numerical quantities are generally not featured.

Similar development seems to be taking place in HCI research focused on user
interfaces. The UIST guidelines6 instruct authors to evaluate system contributions
holistically, and the community has developed heuristics for such evaluation, such as

6 https://uist.acm.org/uist2021/author-guide.html

6

https://uist.acm.org/
https://conferences.computer.org/VLHCC/
https://liveprog.org/
https://2021.programming-conference.org/home/px-2021


Joel Jakubovic, Jonathan Edwards, and Tomas Petricek

Evaluating User Interface Systems Research [47]. Our set of dimensions offers similar
heuristics for identifying interesting aspects of programming systems, though they
focus more on underlying technical properties than the surface interface.

Finally, we believe that the aforementioned paradigm shift from programming
systems to programming languages has hidden many ideas about programming that
are worthwhile recovering and developing further [53]. Thus our approach is related to
the idea of complementary science developed by Chang [7] in the context of history and
philosophy of science. Chang argues that even in disciplines like physics, superseded
or falsified theories may still contain interesting ideas worth documenting. In the
field of programming, where past systems are discarded for many reasons besides
empirical failure, Chang’s complementary science approach seems particularly suitable.

2.4 What we are trying to achieve

In short, while there is a theory for programming languages, programming systems
deserve a theory too. It should apply from the small scale of language implementations
to the vast scale of operating systems. It should be possible to analyse the common
and unique features of different systems, to reveal new possibilities, and to build
on past work in an effective manner. In Kuhnian terms, it should enable a body of
“normal science”: filling in the map of the space of possible systems (Figure 1), thereby
forming a knowledge repository for future designers.

3 Programming systems

We intentionally use the term programming system to refer to a broad range of systems
which are programmable to a varying degree. This section highlights a number of
example families of programming systems, following a roughly chronological order.
This serves three purposes. First, looking at a number of examples from the past helps
build an intuitive understanding of what we mean by a programming system. Second,
it allows us to introduce example systems that we will use in the next section to
illustrate the individual technical dimensions. Third, studying the difference between
systems in individual families is one way of identifying and motivating interesting
technical dimensions.

3.1 Interacting with computers

The key aspect of computers that enabled the rise of programming systems was
the ability for a programmer to interact one-on-one with a computer. This was not
possible in the 1950s when most computers were large and operated in a batch-
processing mode. Two historical developments enabled such interactivity from the
1960s. First, time-sharing systems enabled interactive shared use of a computer via a
teletype. Second, smaller computers such as the PDP-1 and PDP-8 provided similar
direct interaction, while 1970s workstations such as the Alto and Lisp Machines added
graphical displays and mouse input.
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3.1.1 Lisp
The Lisp programming language, in the form of LISP 1.5 [40], arrived before the
rise of interactive computers. Nevertheless, the existence of an interpreter and the
absence of declarations made it natural to use Lisp interactively, with the first such
implementations appearing in the early 1960s. Two branches of the Lisp family,7

MacLisp and the later Interlisp, fully embraced the so-called “conversational” way
of working. Interaction occured through the teletype at first, later giving way to the
screen and keyboard. Even on the teletype, the system incorporated a number of ideas
that remain popular with programming systems today.

Both MacLisp and Interlisp adopted the idea of persistent address space. Both pro-
gram code and program state were preserved when powering off the system, and
could be accessed and modified interactively as well as programmatically using the
same means. This idea appeared on time-sharing systems and culminated with the
development of Lisp Machines, which embraced the idea that the machine runs con-
tinually and saves the state to disk when needed. Today, while this is still not the
default state for systems running “natively” on some hardware, it is widely seen in
cloud-based services like Google Docs, online IDEs, or virtual machine and container
images.

One idea not widely seen today, yet pioneered in MacLisp and Interlisp, was the
use of structure editors. These let programmers work with Lisp data structures not as
sequences of characters, but as nested lists. In Interlisp, for example, the programmer
would use commands such as *P to print the current expression, or *(2 (X Y)) to
replace its second element with the argument (X Y). The PILOT system [65], later
integrated into Interlisp, offered even more sophisticated conversational features. For
typographical errors and other slips, it would offer an automatic fix for the user to
interactively accept, modifying the program in memory and resuming execution.

3.1.2 Smalltalk
Smalltalk came on the scene in the 1970s, with the ambition of providing “dynamic
media which can be used by human beings of all ages” [31]. The authors saw comput-
ers as meta-media that could become a range of other media for education, discourse,
creative arts, simulation and other applications not yet invented. Smalltalk was de-
signed for single-user workstations with a graphical display, and pioneered this display
not just for applications but also for programming itself. This evolved over the history
of Smalltalk. In Smalltalk 72, one wrote code in the bottom half of the screen. When
editing a definition, the window became a structure editor logically similar to that
of Lisp, but controlled using a mouse and menus instead of a teletype. Smalltalk 76
completed the transition from a terminal-based interface to a graphical interface, and
introduced the class browser for navigating through classes and modifying their code.

Smalltalk shared a number of other characteristics with Lisp, although its key
concept was one of objects and message passing rather than lists. They both differ

7 The Lisp family consists of several branches, including MacLisp, InterLisp, ZetaLisp, Common
Lisp, Scheme, Racket, and Clojure. see [62]
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from most modern programming systems by adopting the aforementioned persistent
address space model of programming, where all objects remain in memory. Any
changes made to the system state by programming or execution are preserved when
the computer is turned off. The fact that much of the Smalltalk environment was
implemented in itself, a property shared with many later Lisp systems, made it possible
to significantly modify the system from within.

3.1.3 UNIX
Both Lisp and Smalltalk worked, to some extent, as operating systems. The user
started their machine directly in the Lisp or Smalltalk environment and was able to
do everything they needed from within the system.8 This explains why it is worth
considering (especially programmer-oriented) operating systems as programming
systems too. A prime example of this is UNIX, a 1970s operating system for time-sharing
computers.

Many aspects of programming systems are shaped by their intended target audience.
UNIX was built for computer hackers themselves and, as such, has its interface close
to the machine. Although UNIX is historically closely linked to the C programming
language, it developed a language-agnostic set of abstractions that make it possible
to use multiple programming languages in a single system. While everything is
an object in Smalltalk, the ontology of the UNIX system consists of files, memory,
executable programs, and running processes. Interestingly, there is an explicit stage
distinction here, not present in Smalltalk or Lisp: UNIX distinguishes between volatile
memory structures, which are lost when the system is shut down, and non-volatile
disk structures that are preserved. The ontology of files, however, enables an open
pluralistic environment.

3.2 Application platforms

The previously discussed programming systems were either universal, in that they
did not focus on any particular kind of application, or they were focused on broad
application areas. Lisp, for example, was designed for symbolic data manipulation in
the context of Artificial Intelligence, while FORTRAN focused on scientific computing.
However, as computers became more widely used, it became clear that there are
more narrow typical kinds of applications that need to be built. For those, specialized
programming systems began to appear. Although they are more focused, they also
support programming based on rich interactions with specialized visual and textual
notations.

8 When the Lisp and Smalltalk systems were implemented on specialized computers—
InterLisp and Smalltalk on the Alto and Xerox D, ZetaLisp and Common Lisp on Lisp
machines—the user would start their computers directly in the programming system envi-
ronment. When implemented on commodity hardware, the user would resume a saved
image of the system.
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3.2.1 Spreadsheets
Spreadsheets, along with word processors, were the application that turned per-
sonal computers from playthings for hackers into a business tool. The first system,
VisiCalc, became available in 1979 and helped analysts perform budget calculations.
Spreadsheets developed over time, acquiring features that made them into powerful
programming systems in a way VisiCalc was not. The final step was the 1993 inclusion
of macros in Excel, later extended with Visual Basic for Applications. As program-
ming systems, spreadsheets are notable for their programming substrate (a grid) and
evaluation model (automatic re-evaluation).

3.2.2 HyperCard
While spreadsheets were designed to solve problems in a specific application area,
the next system we consider was designed around a particular application format.
1987 saw HyperCard [42], with programs as “stacks of cards” containing multimedia
components and controls such as buttons. These controls could be programmed with
pre-defined operations like “navigate to another card”, or via the HyperTalk scripting
language for anything more sophisticated.

As a programming system, HyperCard is interesting for a couple of reasons. It
effectively combines visual and textual notation. Programs appear the same way
during editing as they do during execution. Most notably, HyperCard supports gradual
progression from the “user” role to “developer”: a user may first use stacks, then go
on to edit the visual aspects or choose pre-defined logic until, eventually, they learn
to program in HyperTalk.

3.3 Developer platforms

Programming systems such as Smalltalk and HyperCard are relatively self-contained.
It is clear what is part of the system, and what is on the outside. For many systems that
began to appear in the late 1980s, this is not the case. To think about them, we have to
consider a number of components, some of which may be conventional programming
languages. The boundaries of these developer platforms are less well-defined and we
acknowledge that the exact delineation we choose significantly affects our analysis.

3.3.1 Early and late Web
The Web appeared in 1989 as a way of sharing and organizing information, implement-
ing the ideas of hypertext. The web gradually evolved from an information sharing
system to a developer platform when client-side scripting using JavaScript became
possible. The Web ecosystem started to consist of server-side and client-side program-
ming tools. Today, the Web combines the notations of HTML, CSS, a wide range of
server-side programming systems as well as JavaScript, and many languages that
compile to JavaScript.

In the 1990s, the “early Web” became a widely used programming system. JavaScript
code was distributed in a form that made it easy to copy and re-use existing scripts,
which led to enthusiastic adoption by non-experts. This is comparable to the birth of
microcomputers like Commodore 64 with BASIC a decade earlier.
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The Web ecosystem continued to evolve. In the 2000s, multiple programming
languages started to treat JavaScript as a compilation target, while JavaScript started
to be used as a programming language on the server-side. This defines the “late Web”
ecosystem, which is quite different from its early incarnation. JavaScript code was no
longer simple enough to whimsically copy and paste, yet advanced developer tools
provided functionality resembling early interactive programming systems like Lisp
and Smalltalk. The Document Object Model (DOM) structure created by a web page
is transparent, accessible to the user and modifiable through the built-in browser
debugging tools, and third-party code to modify the structure can be injected via
extensions. In this, the DOM resembles the persistent image model. The DOM also
inspired further research on image-based programming: Webstrates [37] synchronizes
DOM edits made in the browser to all other clients connected to a single server.

3.3.2 REPLs and notebooks
Another kind of developer ecosystem which evolved from simple scripting tools
consists of modern data science tools, such as Jupyter, whose roots date back to
“On-Line Systems” developed in the 1960s. The style was exemplified in conversational
implementations of Lisp, where users could type commands to be evaluated and
see the results printed; this interaction became known as the REPL (Read-Eval-Print
Loop). In the late 1980s, Mathematica 1.0 combined the REPL interaction with a
notebook document format that showed the commands alongside visual outputs, an
idea pioneered in work on literate programming [38].

Today, REPLs exist for many programming languages. Unlike in Lisp, they are
often separate from the running program. REPLs often maintain an execution state
independent of a running program and there are many strategies for prototyping
code in a REPL before making it a part of an ordinary compiled application.

Notebooks for data science are a particularly interesting example. Their primary
output is the notebook itself, rather than a separate application to be compiled and
run. The code lives in a document format, interleaved with other notations. Code is
written in small parts that are executed (almost) immediately, offering the user more
rapid feedback than in conventional programming. A notebook can be seen as a trace
of how the result has been obtained, yet one often problematic feature of notebooks is
that some allow the user to run code blocks out-of-order! Thus, while a Common Lisp
REPL user could just dribble their session to a file, retracing one’s steps in a notebook
can be rather more subtle.

3.3.3 Haskell and other languages
The aforementioned 1990s paradigm shift from thinking about systems to thinking
about languages means that researchers tend to emphasize the language side of
programming. However, all programming languages are a part of a richer ecosystem
that consist of editors and other tools. In our analysis, we choose Haskell as our
example of a clearly language-focused programming system.

Like most programming languages, Haskell code can be written in a wide range of
text editors, some of which support assistance tools such as syntax highlighting and
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auto-completion. These offer immediate feedback while editing code, such as when
highlighting type errors.

Haskell is mathematically rooted and relies on mathematical intuition for under-
standing many of its concepts. This background is also reflected in the notations it uses.
In addition to the concrete language syntax (used when writing code), the Haskell
ecosystem also uses an informal mathematical notation, which is used when writing
about Haskell (e.g. in academic papers or on the whiteboard). This provides an addi-
tional tool for manipulating Haskell programs and experimenting with them on paper
in vitro, in ways that other systems may attempt to achieve through experimentation
within the system in vivo.

4 Technical dimensions

For the rest of this paper, we present our proposed technical dimensions grouped
under clusters. The clusters may be regarded as “topics of interest” or “areas of inquiry”
when studying a given system, grouping together related dimensions against which
to measure it.

Each cluster is named and opens with a boxed summary, followed by a short descrip-
tion, and closes with a list of any relations to other clusters along with any references
if applicable. Within the main description, individual dimensions are listed. Some-
times, a particular value along a dimension (or a combination of values along several
dimensions) can be recognized as a familiar pattern—perhaps with a name already
established in the literature. These are marked as examples. Finally, interspersed
discussion that is neither a dimension nor an example is introduced as a remark. We
include a concise reference sheet on the next page, though of course this cannot
substitute for reading the relevant sections at least once.
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Dimension (CLUSTER) Summary Range of key examples

INTERACTION How do users manifest their ideas, evaluate the result, and generate new ideas in response?

Feedback Loops How wide are the various gulfs of execution
and evaluation and how are they related?

Immediate Feedback (short) vs. batch mode
(long) gulf of evaluation

Modes of Interaction Which sets of feedback loops only occur to-
gether?

Setup vs. editing vs. debugging

Abstraction Construction How do we go from abstractions to concrete
examples and vice versa?

Programming by Example vs. first
principles

NOTATION How are the different textual / visual programming notations related?

Notational Structure What notations are used to program the sys-
tem and how are they related?

Notations overlap and need sync vs.
complement each other

Surface / Internal Notations What is the connection between what a user
sees and what a computer program sees?

Sequence Editing vs. Rendering, Structure
Editing vs. Recovery

Primary / Secondary Notations Is one notation more important than others? Secondary build scripts vs. visual editor and
code on equal footing in Flash

Expression Geography Do similar expressions encode similar pro-
grams?

Concise yet error-prone vs. explicit yet
verbose

Uniformity of Notations Does the notation use a small or a large num-
ber of basic concepts?

Lisp S-expressions vs. English-like textual
notations

CONCEPTUAL STRUCTURE How is meaning constructed? How are internal and external incentives balanced?

Conceptual Integrity vs.
Openness

Does the system present as elegantly designed
or pragmatically improvised?

Integrity (Everything is a X) vs. openness
(compatible mixtures)

Composability What are the primitives? How can they be
combined to achieve novel behaviors?

Sequence, selection, repetition, function
abstraction, recursion, logical connectives

Convenience Which wheels do users not need to reinvent? Small vs. expansive standard libraries

Commonality How much is common structure explicitly
marked as such?

Common structure is redundantly flattened
vs. factored out

CUSTOMIZABILITY Once a program exists in the system, how can it be extended and modified?

Staging of Customization Must we customize running programs differ-
ently to inert ones? Do these changes last
beyond termination?

Source code vs. config files, Developer Tools
tab, auto image-based persistence, scripting
language

Externalizability Which portions of the system’s state can be
referenced and transferred to/from it?

None (state is private) vs. all state exposed
as human-legible, CSS-like addressing

Additive Authoring How far can the system’s behavior be
changed by adding expressions?

None (requires power to change original) vs.
full (anything can be overridden repeatedly)

Self-Sustainability How far can the system’s behavior be
changed from within?

None (rely on extenal tools) vs.
self-sufficient (contains everything needed)

AUTOMATION How far does the system remove the need to spell out implementation in minute detail?

Degrees of Automation What part of program logic does not need to
be explicitly specified?

Garbage collection (low-tech) vs. Prolog
engine (hi-tech)

ERRORS What does the system consider to be an error? How are they prevented and handled?

Error Detection What errors can be detected in which feed-
back loops, and how?

Human inspection in live coding vs. partial
automation in static typing

Error Response How does the system respond when an error
is detected?

Does it stop, recover automatically, ignore
the error or ask the user how to continue?

ADOPTABILITY How does the system facilitate or obstruct adoption by both individuals and communities?

Learnability What is the attitude towards the learning
curve and what is the target audience?

HyperCard for the general public vs.
FORTRAN for scientists

Sociability What are the social and economic factors
that make the system the way it is?

Funding, volunteers, code sharing, Q/A sites
vs. documentation, sense of belonging



Technical Dimensions of Programming Systems

4.1 Interaction

«««<Updated upstream How do users manifest their ideas, evaluate the result, and generate new ideas in
response?

======= How do users implement their ideas, evaluate the result, and generate new ideas in
response?

»»»> Stashed changes
An essential aspect of programming systems is how the user interacts with them

when creating programs. Take the standard form of statically typed, compiled lan-
guages with straightforward library linking: here, programmers write their code in
a text editor, invoke the compiler, and read through error messages they get. After
fixing the code to pass compilation, a similar process might happen with runtime
errors.

Other forms are yet possible. On the one hand, some typical interactions like com-
pilation or execution of a program may not be perceptible at all. On the other hand,
the system may provide various interfaces to support the plethora of other interac-
tions that are often important in programming, such as looking up documentation,
managing dependencies, refactoring or pair programming.

We focus on the interactions where programmer interacts with the system to
construct a program with a desired behavior. To analyze those, we use the concepts
of gulf of execution and gulf of evaluation from The Design of Everyday Things [46].

4.1.1 Dimension: feedback loops
In using a system, one first has some idea and attempts to make it exist in the software;
the gap between the user’s goal and the means to execute the goal is known as the
gulf of execution. Then, one compares the result actually achieved to the original goal
in mind; this crosses the gulf of evaluation. These two activities comprise the feedback
loop through which a user gradually realises their desires in the imagination, or refines
those desires to find out “what they actually want”.

A system must contain at least one such feedback loop, but may contain several at
different levels or specialized to certain domains. For each of them, we can separate
the gulf of execution and evaluation as independent legs of the journey, with possibly
different manners and speeds of crossing them.

For example, we can analyze statically checked programming languages (e.g. Java,
Haskell) into several feedback loops (Figure 2):

1. Programmers often think about design details and calculations on a whiteboard
or notebook, even before writing code. This supplementary medium has its own
feedback loop, even though this is often not automatic.

2. The code is written and is then put through the static checker. An error sends the
user back to writing code. In the case of success, they are “allowed” to run the
program, leading into cycle 3.

The execution gulf comprises multiple cycles of the supplementary medium, plus
whatever overhead is needed to invoke the compiler (such as build systems).
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Figure 2 The nested feedback loops of a statically-checked programming language.

The evaluation gulf is essentially the waiting period before static errors or a
successful termination are observed. Hence this is bounded by some function of
the length of the code (the same cannot be said for the following cycle 3.)

3. With a runnable program, the user now evaluates the runtime behavior. Runtime
errors can send the user back to writing code to be checked, or to tweak dynamically
loaded data files in a similar cycle.

The execution gulf here may include multiple iterations of cycle 2, each with its
own nested cycle 1.
The evaluation gulf here is theoretically unbounded; one may have to wait a
very long time, or create very specific conditions, to rule out certain bugs (like
race conditions) or simply to consider the program as fit for purpose.
By imposing static checks, some bugs can be pushed earlier to the evaluation
stage of cycle 2, reducing the likely size of the cycle 3 evaluation gulf.
On the other hand, this can make it harder to write statically valid code, which
may increase the number of level-2 cycles, thus increasing the total execution
gulf at level 3.
Depending on how these balance out, the total top-level feedback loop may
grow longer or shorter.

4.1.2 Example: immediate feedback
The specific case where the evaluation gulf is minimized to be imperceptible is known
as immediate feedback. Once the user has caused some change to the system, its effects
(including errors) are immediately visible. This is a key ingredient of liveness, though
it is not sufficient on its own. (See Relations)

The ease of achieving immediate feedback is obviously constrained by the computa-
tional load of the user’s effects on the system, and the system’s performance on such
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tasks. However, such “loading time” is not the only way feedback can be delayed: a
common situation is where the user has to manually ask for (or “poll”) the relevant
state of the system after their actions, even if the system finished the task quickly. Here,
the feedback could be described as immediate upon demand yet not automatically
demanded. For convenience, we choose to include the latter criterion—automatic
demand of result—in our definition of immediate feedback.

In a REPL or shell, there is amain cycle of typing commands and seeing their output,
and a secondary cycle of typing and checking the command line itself. The output
of commands can be immediate, but usually reflects only part of the total effects
or even none at all. The user must manually issue further commands afterwards,
to check the relevant state bit by bit. The secondary cycle, like all typing, provides
immediate feedback in the form of character “echo”, but things like syntax errors
generally only get reported after the entire line is submitted. This evaluation gulf has
been reduced in the JavaScript console of web browsers, where the line is “run” in a
limited manner on every keystroke. Simple commands without side-effects, such as
calls to pure functions, can give instantly previewed results—though partially typed
expressions and syntax errors will not trigger previews.

4.1.3 Example: direct manipulation
Direct manipulation [57] is a special case of an immediate feedback loop. The user
sees and interacts with an artefact in a way that is as similar as possible to real life;
this typically includes dragging with a cursor or finger in order to physically move a
visual item, and is limited by the particular haptic technology in use.

Naturally, because moving real things with one’s hands does not involve any waiting
for the object to “catch up”,9 direct manipulation is necessarily an immediate-feedback
cycle. If, on the other hand, one were to move a figure on screen by typing new co-
ordinates in a text box, then this could still give immediate feedback (if the update
appears instant and automatic) but would not be an example of direct manipulation.

Spreadsheets contain a feedback loop for direct manipulation of values and format-
ting, as in any other WYSIWYG application. They also contain another loop for formula
editing and formula invocation. Here, there is larger execution gulf for designing
and typing formulas. This makes it an “immediate feedback” loop only on-demand as
defined above.

4.1.4 Dimension: modes of interaction
The possible interactions in a programming system are typically structured so that
interactions, and the associated feedback loops, are only available in certain modes.
For example, when creating a new project, the user may be able to configure the
project through a conversational interface like npm init in modern JavaScript. Such

9 In some situations, such as steering a boat with a rudder, there is a delay between input and
effect. But on closer inspection, this delay is between the rudder and the boat; we do not see
the hand pass through the wheel like a hologram, followed by the wheel turning a second
later. In real life, objects touched directly give immediate feedback; objects controlled
further down the line might not!
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interactions are no longer available once the project is created. This idea of interaction
modes goes beyond just programming systems, appearing in software engineering
methodologies. In particular, having a separate implementation andmaintenance phase
would be an example of two modes.

Editing vs debugging. A good example is the distinction between editing and debug-
ging mode. When debugging a program, the user can modify the program state and
get (more) immediate feedback on what individual operations do. In some systems,
one can even modify the program itself during debugging. Such feedback loops are
not available outside of debugging mode.

Lisp systems sometimes distinguish between interpreted and compiledmode. The two
modes do not differ just in the efficiency of code execution, but also in the interactions
they enable. In the interpreted mode, code can be tested interactively and errors
may be corrected during the code execution (see Error response). In the compiled
mode, the program can only be tested as a whole. The same two modes also exist, for
example, in some Haskell systems where the REPL uses an interpreter (GHCi) distinct
from the compiler (GHC).

Jupyter notebooks. A programming system may also unify modes that are typically
distinct. The Jupyter notebook environment does not have a distinct debugging mode;
the user runs blocks of code and receives the result. The single mode can be used to
quickly try things out, and to generate the final result, partly playing the role of both
debugging and editing modes. However, even Jupyter notebooks distinguish between
editing a document and running code.

4.1.5 Dimension: abstraction construction
A necessary activity in programming is going between abstract schemas and concrete
instances. Abstractions can be constructed from concrete examples, first principles
or through other methods. A part of the process may happen in the programmer’s
mind: they think of concrete cases and come up with an abstract concept, which they
then directly encode in the system. Alternatively, a system can support these different
methods directly.

One option is to construct abstractions from first principles. Here, the programmer
starts by defining an abstract entity such as an interface in object-oriented program-
ming languages. To do this, they have to think what the required abstraction will be
(in the mind) and then encode it (in the system).

Another option is to construct abstractions from concrete cases. Here, the programmer
uses the system to solve one or more concrete problems and, when they are satisfied,
the system guides them in creating an abstraction based on their concrete case(s). In a
programming language IDE this manifests as the “extract function” refactor, whereas
in other systems we see approaches like macro recording.
Pygmalion. In Pygmalion [61], all programming is done by manipulating concrete

icons that represent concrete things. To create an abstraction, you can use “Remember
mode”, which records the operations done on icons and makes it possible to bind this
recording to a new icon.
Jupyter notebook. In Jupyter notebooks, you are inclined to work with concrete

things, because you see previews after individual cells. This discourages creating
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abstractions, because then you would not be able to look inside at such a fine grained
level.
Spreadsheets. Up until the recent introduction of lambda expressions into Excel,

spreadsheets have been relentlessly concrete, without any way to abstract and reuse
patterns of computation other than copy-and-paste.

4.1.6 Relations
Errors (Section 4.6) A longer evaluation gulf delays the detection of errors. A longer
execution gulf can increase the likelihood of errors (e.g. writing a lot of code or
taking a long time to write it). By turning runtime bugs into statically detected
bugs, the combined evaluation gulfs can be reduced.
Adoptability (Section 4.7): The execution gulf is concerned with software using and
programming in general. The time taken to realize an idea in software is affected
by the user’s familiarity and the system’s learnability.
Notation (Section 4.2): Feedback loops are related to notational structures. In
a system with multiple notations, each notation may have different associated
feedback loops. The motto “The thing on the screen is supposed to be the actual
thing” [50], adopted in the context of live programming, relates liveness to a direct
connection between surface and internal notations. The idea is that interactable
objects should be equipped with faithful behavior, instead of being intangible
shadows cast by the hidden real object.

4.2 Notation

How are the different textual / visual programming notations related?
Programming is always done through some form of notation. We consider notations

in the most general sense and include any structured gesture using textual or visual
notation. Textual notations primarily include programming languages, but also things
like configuration files. Visual notations include graphical programming languages.
Other kinds of structured gestures include user interfaces for constructing visual
elements used in the system.

4.2.1 Dimension: notational structure
In practice, most programming systems use multiple notations. Different notations
can play different roles in the system. On the one hand, multiple overlapping notations
can be provided as different ways of programming the same aspects of the system.
In this case, each notation may be more suitable to different kinds of users, but may
have certain limitations (for example, a visual notation may have a limited expressive
power). On the other hand, multiple complementing notations may be used as the
means for programming different aspects of the system. In this case, programming the
system requires using multiple notations, but each notation may be more suitable for
the task at hand; think of how HTML describes document structure while JavaScript
specifies its behavior.
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4.2.2 Example: overlapping notations
A programming system may provide multiple notations for programming the same
aspect of the system. This is typically motivated by an attempt to offer easy ways
of completing different tasks: say, a textual notation for defining abstractions and
a visual notation for specifying concrete structures. The crucial issue in this kind of
arrangement is synchronizing the different notations; if they have different charac-
teristics, this may not be a straightforward mapping. For example, source code may
allow more elaborate abstraction mechanisms like loops, which will appear as visible
repetition in the visual notation. What should such a system do when the user edits
a single object that resulted from such repetition? Similarly, textual notation may
allow incomplete expressions that do not have an equivalent in the visual notation.
For programming systems that use overlapping notations, we need to describe how
the notations are synchronized.
Sketch-n-Sketch [27] employs overlapping notations for creating and editing SVG

and HTML documents. The user edits documents in an interface with a split-screen
structure that shows source code on the left and displayed visual output on the right.
They can edit both of these and changes are propagated to the other view. The code can
use abstraction mechanisms (such as functions) which are not completely visible in the
visual editor (an issue we return to in expression geography below). Sketch-n-Sketch
can be seen as an example of a projectional editor.10

UML Round-tripping. Another example of a programming system that utilizes the
overlapping notations structure are UML design tools that display the program both
as source code and as a UML diagram. Edits in one result in automatic update
of the other. An example is the Together/J11 system. To solve the issue of notation
synchronization, such systems often need to store additional information in the textual
notation, typically using a special kind of code comment. In this example, after the
user re-arranges classes in UML diagrams, the new locations need to be updated in
the code.

4.2.3 Example: complementing notations
A programming system may also provide multiple complementing notations for pro-
gramming different aspects of its world. Again, this is typically motivated by the aim
to make specifying certain aspects of programming easier, but it is more suitable when
the different aspects can be more clearly separated. The key issue for systems with
complementing notations is how the different notations are connected. The user may
need to use both notations at the same time, or they may need to progress from one
to the next level when solving increasingly complex problems. In the latter case, the
learnability of progressing from one level to the next is a major concern.
Spreadsheets and HyperCard. In Excel, there are three different complementing

notations that allow users to specify aspects of increasing complexity: (i) the visual grid,

10 Technically, traditional projectional editors usually work more directly with the abstract
syntax tree of a programming language.

11 https://www.mindprod.com/jgloss/togetherj.html
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(ii) formula language and (iii) a macro language such as Visual Basic for Applications.
The notations are largely independent and have different degrees of expressive power.
Entering values in a grid cannot be used for specifying new computations, but it can be
used to adapt or run a computation, for example when entering different alternatives
in What-If Scenario Analysis. More complex tasks can be achieved using formulas
and macros. A user gradually learns more advanced notations, but experience with a
previous notation does not help with mastering the next one. The approach optimizes
for easy learnability at one level, but introduces a hurdle for users to surmount in
order to get to the second level. The notational structure of HyperCard is similar and
consists of (i) visual design of cards, (ii) visual programming (via the GUI) with a
limited number of operations and (iii) HyperTalk for arbitrary scripting.
Boxer and Jupyter. Boxer [10] uses complementing notations in that it combines a

visual notation (the layout of the document and the boxes of which it consists) with
textual notation (the code in the boxes). Here, the textual notation is always nested
within the visual. The case of Jupyter notebooks is similar. The document structure is
graphical; code and visual outputs are nested as editable cells in the document. This
arrangement is common in many other systems such as Flash or Visual Basic, which
both combine visual notation with textual code, although one is not nested in the
other.

4.2.4 Dimensions: surface notation and internal notation
All programming systems build up structures in memory, which we can consider as an
internal notation not usually visible to the user. Even though such structures might
be revealed in a debugger, they are hidden during normal operation. What the user
interacts with instead is the surface notation, typically one of text or shapes on a
screen. Every interaction with the surface notation alters the internal notation in some
way, and the nature of this connection is worth examining in more detail. To do this,
we illustrate with a simplified binary choice for the form of these notations.

4.2.5 Examples: implicit vs. explicit structure
Let us partition notations into two families. Notations with implicit structure present
as a sequence of items, such as textual characters or audio signal amplitudes. Those
with explicit structure present as a tree or graph without an obvious order, such as
shapes in a vector graphics editor. These two types of notations can be transformed
into each other: the implicit structure contained in a string can be parsed into an
explicit syntax tree, and an explicit document structure might be rendered into a
sequence of characters with the same implicit structure.

Now consider an interface to enter a personal name made up of a forename and a
surname. For the surface notation, there could be a single text field to hold the names
separated with a space; here, the sub-structure is implicit in the string. Alternatively,
there could be two fields where the names are entered separately, and their separation
is explicit. A similar choice exists for the internal notation built up in memory: is it a
single string, or two separate strings?

We can see that these choices give four combinations. More interestingly, they
exhibit unique characters owing to two key asymmetries. Firstly, surface notation is
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mostly used by humans, while the internal notation is mostly used by the computer.
Secondly, and most significantly, computer programs can only work with explicit
structure, while humans can understand both explicit and implicit structure. Because
of the practical consequences of this asymmetry, we will examine the combinations
with emphasis on the internal notation first.

4.2.6 Examples: one string in memory (implicitly structured internal notation)
The simplest case here would be with implicit structure in the surface notation, i.e. a
single text box for the full name. Edits to the surface are straightforwardly mirrored
interally and persisted to disk. This corresponds to text editing. We can generalize this
to an idea of sequence editing if we view the fundamental act as recording events to
a list over time. For text, these are key presses; for an audio editing interface they
would be samples of sound amplitude.

In the other case, with two text boxes, we have sequence rendering. The information
about the separation of the two strings, present in the interface, is not quite “thrown
away” but is made implicit as a space character in the string. This combination
corresponds to Visual Basic generating code from GUI forms, video editors combining
multiple clips and effects into a single stream, and 3D renderers turning scene graphs
into pixels. Another example is line-based diff tools, which provide side-by-side
views and related interfaces, yet must ultimately forward the user’s changes to the
underlying text file.

Critically, in both of these cases, a computer program can only manipulate the
stored sequences as sequences; that is, by inserting, removing, or serially reading.
The appealing feature here is that these operations are simple to implement and
may be re-usable across many types of sequences. However, any further structure is
implicit and, to work with it programmatically, a user must write a program to parse
it into something explicit. Furthermore, errors introduced at this stage may simply be
recorded into the sequence, only to be discovered much later in an attempt to use the
data.

4.2.7 Examples: two strings in memory (explicitly structured internal notation)
With two text boxes, both notations match, so there is not much work to do. As with
sequence editing, edits on the surface can be mirrored to the internal notation. This
corresponds to vector graphics editors and 3D modelling tools, as well as structure
editors for programming languages. For this reason we call this combination structure
editing.

With a single text field, we have structure recovery. Parsing needs to happen each
time the input changes. This style is found in the DOM inspector in browser developer
tools, where HTML can be edited as text to make changes to the document tree
structure. More generally, this is the mode found in compilers and interpreters which
accept program source text yet internally work on tree and graph structures. It is also
possible to do a sort of structure editing this way, where the experience is made to
resemble text editing but the output is explicitly structured.

In both of these cases, in order to write programs to transform, analyze, or otherwise
work with the digital artefact the user has created, one can trivially navigate the
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stored structure instead of parsing it for every use. Parsing is either done away with
altogether or is reduced to a transient process that happens during editing; this means
errors can be caught at the moment they are introduced instead of remaining latent.

4.2.8 Dimension: primary and secondary notations
In practice, most programming systems use multiple notations. Even in systems based
on traditional programming languages, the primary notation of the language is often
supported by secondary notations such as annotations encoded in comments and build
tool configuration files. However, it is possible for multiple notations to be primary,
especially if they are overlapping as defined earlier.
Programming languages. Programming systems built around traditional program-

ming languages typically have further notations or structured gestures associated
with them. The primary notation in UNIX is the C programming language. Yet this
is enclosed in a programming system providing a multi-step mechanism for running
C code via the terminal, assisted by secondary notations such as shell scripts. Some
programming systems attempt to integrate tools that normally rely on secondary
notations into the system itself, reducing the number of secondary notations that
the programmer needs to master. For example, in the Smalltalk descendant Pharo,
versioning and package management is done from within Pharo, removing the need
for secondary notation such as git commands and dependency configuration files.12

Haskell. In Haskell, the primary notation is the programming language, but there
are also a number of secondary notations. Those include package managers (e.g. the
cabal.project file) or configuration files for Haskell build tools. More interestingly, there
is also an informal mathematical notation associated with Haskell that is used when
programmers discuss programs on a whiteboard or in academic publications. The
idea of having such a mathematical notation dates back to the Report on Algol 58 [51],
which explicitly defined a “publication language” for “stating and communicating
problems” using Greek letters and subscripts.

4.2.9 Dimension: expression geography
A crucial feature of a notation is the relationship between the structure of the notation
and the structure of the behavior it encodes. Most importantly, do similar expressions
in a particular notation represent similar behavior?13 Visual notations may provide
a more or less direct mapping. On the one hand, similar-looking code in a block
language may mean very different things. On the other hand, similar looking design
of two HyperCard cards will result in similar looking cards—the mapping between
the notation and the logic is much more direct.
C/C++ expression language. In textual notations, this may easily not be the case.

Consider the two C conditionals:

12 The tool for versioning and package management in Pharo can still be seen as an internal
domain-specific language and thus as a secondary notation, but its basic structure is shared
with other notations in the Pharo system.

13 See Basman’s [1] similar discussion of “density”.
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if (x==1) { ... } evaluates the Boolean expression x==1 to determine whether x equals 1,
running the code block if the condition holds.
if (x=1) { ... } assigns 1 to the variable x. In C, assignment is an expression returning
the assigned value, so the result 1 is interpreted as true and the block of code is
always executed.

A notation can be designed to map better to the logic behind it, for example, by
requiring the user to write 1==x. This solves the above problem as 1 is a literal rather
than a variable, so it cannot be assigned to (1=x is a compile error).

4.2.10 Dimension: uniformity of notations
One common concern with notations is the extent to which they are uniform. A
uniform notation can express a wide range of things using just a small number of
concepts. The primary example here is S-expressions from Lisp. An S-expression
is either an atom or a pair of S-expressions written (s1 . s2). By convention, an S-
expression (s1 . (s2 . (s3 . nil))) represents a list, written as (s1 s2 s3). In Lisp, uniformity
of notations is closely linked to uniformity of representation.14 In the idealized model
of LISP 1.5, the data structures represented by an S-expression are what exists in
memory. In real-world Lisp systems, the representation in memory is more complex.
A programming system can also take a very different approach and fully separate the
notation from the in-memory representation.

Lisp systems. In Lisp, source code is represented in memory as S-expressions, which
can be manipulated by Lisp primitives. In addition, Lisp systems have robust macro
processing as part of their semantics: expanding a macro revises the list structure of
the code that uses the macro. Combining these makes it possible to define extensions to
the system in Lisp, with syntax indistinguishable from Lisp. Moreover, it is possible to
write a program that constructs another Lisp program and not only run it interpretively
(using the eval function) but compile it at runtime (using the compile function) and
execute it. Many domain-specific languages, as well as prototypes of new programming
languages (such as Scheme), were implemented this way. Lisp the language is, in this
sense, a “programmable programming language”. [16, 14]

4.2.11 References
Cognitive Dimensions of Notation [24] provide a comprehensive framework for analysing
individual notations, while our focus here is on how multiple notations are related and
how they are structured. It is worth noting that the Cognitive Dimensions also define
secondary notation, but in a different sense to ours. For them, secondary notation
refers to whether a notation allows including redundant information such as color or
comments for readability purposes.

The importance of notations in the practice of science, more generally, has been
studied by [36] as “paper tools”. These are formula-like entities which can be manipu-

14 Notations generally are closely linked to representation in that the notation may mirror the
structures used for program representation. Basman et al. [3] refer to this as a distinction
between “dead” notation and “live” representation forms).
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lated by humans in lieu of experimentation, such as the aforementioned mathematical
notation in Haskell: a “paper tool” for experimentation on a whiteboard. Program-
ming notations are similar, but they are a way of communicating with a machine; the
experimentation does not happen on paper alone.

4.2.12 Relations
Interaction (Section 4.1): The feedback loops that exist in a programming system
are typically associated with individual notations. Different notations may also
have different feedback loops.
Adoptability (Section 4.7): Notational structure can affect learnability. In particular,
complementing notations may require (possibly different) users to master multiple
notations. Overlapping notations may improve learnability by allowing the user
to edit the program in one way (perhaps visually) and see the effect in the other
notation (such as code.)
Errors (Section 4.6). A process that merely records user actions in a sequence (such
as text editing) will, in particular, record any errors the user makes and defer their
handling to later use of the data, keeping the errors latent. A process which instead
treats user actions as edits to a structure, with constraints and correctness rules,
will be able to catch errors at the moment they are introduced and ensure the data
coming out is error-free.

4.3 Conceptual Structure

How is meaning constructed? How are internal and external incentives balanced?

4.3.1 Dimension: conceptual integrity vs. openness
The evolution of programming systems has led away from conceptual integrity towards
an intricate ecosystem of specialized technologies and industry standards. Any attempt
to unify parts of this ecosystem into a coherent whole will create incompatibility with
the remaining parts, which becomes a major barrier to adoption. Designers seeking
adoption are pushed to focus on localized incremental improvements that stay within
the boundaries established by existing practice. This creates a tension between how
highly they can afford to value conceptual elegance, and how open they are to the
pressures imposed by society. We will turn to both of these opposite ends—integrity
and openness—in more detail.

4.3.2 Example: conceptual integrity
I will contend that Conceptual Integrity is the most important consideration
in system design. It is better to have a system omit certain anomalous features
and improvements, but to reflect one set of design ideas, than to have one that
contains many good but independent and uncoordinated ideas. [6]

Conceptual integrity arises not (simply) from one mind or from a small number
of agreeing resonant minds, but from sometimes hidden co-authors and the
thing designed itself. [20]
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Conceptual integrity strives to reduce complexity at the source; it employs unified
concepts that may compose orthogonally to generate diversity. Perhaps the apotheosis
of this approach can be found in early Smalltalk and Lisp machines, which were
complete programming systems built around a single language. They incorporated
capabilities commonly provided outside the programming language by operating
systems and databases. Everything was done in one language, and so everything was
represented with the datatypes of that language. Likewise the libraries and idioms of
the language were applicable in all contexts. Having a lingua franca avoided much of
the friction and impedance mismatches inherent to multi-language systems. A similar
drive exists in the Python programming language, which follows the principle that
“There should be one—and preferably only one—obvious way to do it” in order to
promote community consensus on a single coherent style.

In addition to Smalltalk and Lisp, many programming languages focus on one kind
of data structure [58]:

In COBOL, data consists of nested records as in a business form.
In Fortran, data consists of parallel arrays.
In SQL, data is a set of relations with key constraints.
In scripting languages like Python, Ruby, and Lua, much data takes the form of
string-indexed hash tables.

Finally, many languages are imperative, staying close to the hardware model of ad-
dressable memory, lightly abstracted into primitive values and references into mutable
arrays and structures. On the other hand, functional languages hide references and
treat everything as immutable structured values. This conceptual simplification bene-
fits certain kinds of programming, but can be counterproductive when an imperative
approach is more natural, such as in external input/output.

4.3.3 Example: conceptual openness
Perl, contra Python. In contrast to Python’s outlook, Perl proclaims “There is more than
one way to do it” and considers itself “the first postmodern programming language”
[67]. “Perl doesn’t have any agenda at all, other than to be maximally useful to the
maximal number of people. To be the duct tape of the Internet, and of everything
else.” The Perl way is to accept the status quo of evolved chaos and build upon it using
duct tape and ingenuity. Taken to the extreme, a programming system becomes no
longer a system, properly speaking, but rather a toolkit for improvising assemblages of
found software. Perl can be seen as championing the values of pluralism, compatibility,
or conceptual openness over conceptual integrity. This philosophy has been called
Postmodern Programming [45].

C++, contra Smalltalk. Another case is that of C++, which added to C the Object-
Oriented concepts developed by Smalltalk while remaining 100% compatible with C,
down to the level of ABI and performance. This strategy was enormously successful for
adoption, but came with the tradeoff of enormous complexity compared to languages
designed from scratch for OO, like Smalltalk, Ruby, and Java.

Worse, contra Better. Richard Gabriel first described this dilemma in his influential
1991 essay Worse is Better [19] analyzing the defeat of Lisp by UNIX and C. Because
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UNIX and C were so easy to port to new hardware, they were “the ultimate computer
viruses” despite providing only “about 50%–80% of what you want from an operating
system and programming language”. Their conceptual openness meant that they
adapted easily to the evolving conditions of the external world. The tradeoff was
decreased conceptual integrity, such as the undefined behaviours of C, the junkyard of
working directories, and the proliferation of special purpose programming languages
to provide a complete development environment.
UNIX and Files. Many programming languages and systems impose structure at

a “fine granularity”: that of individual variables and other data and code structures.
Conversely, systems like UNIX and the Web impose fewer restrictions on how program-
mers represent things. UNIX insists only on a basic infrastructure of “large objects”
[33], delegating all fine-grained structure to client programs. This scores many points
for conceptual openness. Files provide a universal API for reading and writing byte
streams, a low-level construct containing so many degrees of freedom that it can
support a wide variety of formats and ecosystems. Processes similarly provide a thin
abstraction over machine-level memory and processors.

Concepual integrity is necessarily sacrificed for such openness; while “everything
is a file” gestures at integrity, in the vein of Smalltalk’s “everything is an object”,
exceptions proliferate. Directories are special kinds of files with special operations,
hardware device files require special ioctl operations, and many commands expect
files containing newline separators. Additionally, because client programs must supply
their own structure for fine-grained data and code, they are given little in the way of
mutual compatibility. As a result, they tend to evolve into competing silos of duplicated
infrastructure [33, 32].

The Web. Web HTTP endpoints, meanwhile, have proven to be an even more adapt-
able and viral abstraction than UNIX files. They operate at a similar level of abstraction
as files, but support richer content and encompass internet-wide interactions between
autonomous systems. In a sense, HTTP GET and PUT have become the “subroutine
calls” of an internet-scale programming system. Perhaps the most salient thing about
the Web is that its usefulness came as such a surprise to everyone involved in design-
ing or competing with it. It is likely that, by staying close to the existing practice of
transferring files, the Web gained a competitive edge over more ambitious and less
familiar hypertext projects like Xanadu [44].

The choice between compatibility and integrity correlates with the personality traits
of pragmatism and idealism. It is pragmatic to accept the status quo of technology
and make the best of it. Conversely, idealists are willing to fight convention and risk
rejection in order to attain higher goals. We can wonder which came first: the design
decision or the personality trait? Do Lisp and Haskell teach people to think more
abstractly and coherently, or do they filter for those with a pre-existing condition?
Likewise, perhaps introverted developers prefer the cloisters of Smalltalk or Lisp to
the adventurous “Wild West” of the Web.

4.3.4 Dimension: composability
In short, you can get anywhere by putting together a number of smaller steps. There
exist building blocks which span a range of useful combinations. Composability is, in
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a sense, key to the notion of “programmability” and every programmable system will
have some level of composability (e.g. in the scripting language.)
UNIX shell commands are a standard example of composability. The base set of

primitive commands can be augmented by programming command executables in
other languages. Given some primitives, one can “pipe” one’s output to another’s input
(|), sequence (; or &&), select via conditions, and repeat with loop constructs, enabling
full imperative programming. Furthermore, command compositions can be packaged
into a named “script” which follows the same interface as primitive commands, and
named subprograms within a script can also be defined.

In HyperCard, the Authoring Environment is non-composable for programming
buttons: there is simply a set of predefined behaviors to choose from. Full scriptability
is available only in the Programming Environment.

The Haskell type system, as well as that of other functional programming languages,
exhibits high composability. New types can be defined in terms of existing ones
in several ways. These include records, discriminated unions, function types and
recursive constructs (e.g. to define a List as either a Nil or a combination of element
plus other list.) The C programming language also has some means of composing
types that are analogous in some ways, such as structs, unions, enums and indeed
even function pointers. For every type, there is also a corresponding “pointer” type. It
lacks, however, the recursive constructs permitted in Haskell types.

4.3.5 Dimension: convenience
In short, you can get to X, Y or Z via one single step. There are ready-made solutions to
specific problems, not necessarily generalizable or composable. Convenience often
manifests as “canonical” solutions and utilities in the form of an expansive standard
library.

Composability without convenience is a set of atoms or gears; theoretically, anything
one wants could be built out of them, but one must do that work. This situation has
been criticized as the Lisp Curse[68].

Composability with convenience is a set of convenient specific tools along with
enough components to construct new ones. The specific tools themselves could be
transparently composed of these building blocks, but this is not essential. They save
users the time and effort it would take to “roll their own” solutions to common tasks.

For example, let us turn to a convenience factor of UNIX shell commands, having
already discussed their composability above. Observe that it would be possible, in
principle, to pass all information to a program via standard input. Yet in actual practice,
for convenience, there is a standard interface of command-line arguments instead,
separate from anything the program takes through standard input. Most programming
systems similarly exhibit both composability and convenience, providing templates,
standard libraries, or otherwise pre-packaged solutions, which can nevertheless be
used programmatially as part of larger operations.

4.3.6 Dimension: commonality
Humans can see Arrays, Strings, Dicts and Sets all have a “size”, but the software
needs to be told that they are the “same”. Commonality like this can be factored out
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into an explicit structure (a “Collection” class), analogous to database normalization.
This way, an entity’s size can be queried without reference to its particular details: if
c is declared to be a Collection, then one can straightforwardly access c.size.

Alternatively, it can be left implicit. This is less upfront work, but permits instances
to diverge, analogous to redundancy in databases. For example, Arrays and Strings
might end up with “length”, while Dict and Set call it “size”. This means that, to query
the size of an entity, it is necessary to perform a case split according to its concrete
type, solely to funnel the diverging paths back to the commonality they represent:

if (entity is Array or String) size := entity.length
else if (entity is Dict or Set) size := entity.size

4.3.7 Examples: flattening and factoring
Data structures usually have several “moving parts” that can vary independently. For
example, a simple pair of “vehicle type” and “color” might have all combinations of (Car,
Van, Train) and (Red, Blue). In this factored representation, we can programmatically
change the color directly: pair.second = Red or vehicle.colour = Red.

In some contexts, such as class names, a system might only permit such multi-
dimensional structure as an exhaustive enumeration: RedCar, BlueCar, RedVan, BlueVan,
RedTrain, BlueTrain, etc. The system sees a flat list of atoms, even though a human can
see the sub-structure encoded in the string. In this world, we cannot simply “change
the color to Red” programmatically; we would need to case-split as follows:

if (type is BlueCar) type := RedCar
else if (type is BlueVan) type := RedVan
else if (type is BlueTrain) type := RedTrain
...

The commonality between RedCar, RedVan, BlueCar, and so on has been flattened.
There is implicit structure here that remains un-factored, similar to how numbers can
be expressed as singular expressions (16) or as factor products (2,2,2,2). Factoring
this commonality gives us the original design, where there is a pair of values from
different sets.

In relational databases, there is an opposition between normalization and redundancy.
In order to fit multi-table data into a flat table structure, data needs to be duplicated
into redundant copies. When data is factored into small tables as much as possible,
such that there is only one place each piece of data “lives”, the database is in normal
form or normalized. Redundancy is useful for read-only processes, because there is
no need to join different tables together based on common keys. Writing, however,
becomes risky; in order to modify one thing, it must be synchronized to the multiple
places it is stored. This makes highly normalized databases optimized for writes over
reads.

4.3.8 Remark: the end of history?
Today we live in a highly developed world of software technology. It is estimated
that 41,000 person years have been invested into Linux. We describe software de-
velopment technologies in terms of stacks of specialized tools, each of which might
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capitalize over 100 person-years of development. Programming systems have become
programming ecosystems: not designed, but evolved. How can we noticeably improve
programming in the face of the overwhelming edifice of existing technology? There
are strong incentives to focus on localized incremental improvements that don’t cross
the established boundaries.

The history of computing is one of cycles of evolution and revolution. Successive
cycles were dominated in turn by mainframes, minicomputers, workstations, personal
computers, and the Web. Each transition built a whole new technology ecosystem
replacing or on top of the previous. The last revolution, the Web, was 25 years ago, with
the result that many people have never experienced a disruptive platform transition.
Has history stopped, or are we just stuck in a long cycle, with increasingly pent-up
pressures for change? If it is the latter, then incompatible ideas now spurned may yet
flourish.

4.3.9 References
How to Design a Good API and Why it Matters [5]

4.4 Customizability

Once a program exists in the system, how can it be extended and modified?
Programming is a gradual process. We start either from nothing, or from an existing

program, and gradually extend and refine it until it serves a given purpose. Programs
created using different programming systems can be refined to different extents, in
different ways, at different stages of their existence.

Consider three examples. First, a program in a conventional programming language
like Java can be refined only by modifying its source code. However, you may be able
to do so by just adding new code, such as a new interface implementation. Second,
a spreadsheet can be modified at any time by modifying the formulas or data it
contains. There is no separate programming phase. However, you have to modify the
formulas directly in the cell—there is no way of modifying it by specifying a change in
a way that is external to the cell. Third, a self-sustaining programming system, such as
Smalltalk, does not make an explicit distinction between “programming” and “using”
phases, and it can be modified and extended via itself. It gives developers the power
to experiment with the system and, in principle, replace it with a better system from
within.

4.4.1 Dimension: staging of customization
For systems that distinguish between different stages, such as writing source code
versus running a program, customization methods may be different for each stage. In
traditional programming languages, customization is done by modifying or adding
source code at the programming stage, but there is no (automatically provided) way
of customizing the created programs once they are running.

There are a number of interesting questions related to staging of customization.
First, what is the notation used for customization? This may be the notation in which
a program was initially created, but a system may also use a secondary notation for
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customization (consider Emacs using Emacs Lisp). For systems with a stage distinction,
an important question is whether such changes are persistent.
Smalltalk, Interlisp and similar. In image-based programming systems, there is

generally no strict distinction between stages and so a program can be customized
during execution in the same way as during development. The program image includes
the programming environment. Users of a program can open this, navigate to a suitable
object or a class (which serve as the addressable extension points) and modify that.
Lisp-based systems such as Interlisp follow a similar model. Changes made directly to
the image are persistent. The PILOT system for Lisp [65] offers an interactive way of
correcting errors when a program fails during execution. Such corrections are then
applied to the image and are thus persistent.

Document Object Model (DOM) and Webstrates: In the context of Web programming,
there is traditionally a stage distinction between programming (writing the code and
markup) and running (displaying a page). However, the DOM can be also modified
by browser Developer Tools—either manually, by running scripts in a console, or by
using a userscript manager such as Greasemonkey. Such changes are not persistent in
the default browser state, but are made so by Webstrates [37] which synchronize the
DOM between the server and the client. This makes the DOM collaborative, but not
(automatically) live because of the complexities this implies for event handling.

4.4.2 Dimension: addressing and externalizability
Programs in all programming systems have a representation that may be exposed
through notation such as source code. When customizing a program, an interesting
question is whether a customization needs to be done by modifying the original
representation, or whether it can be done by adding something alongside the original
structure.

In order to support customization through addition, a programming system needs
a number of characteristics introduced by Basman et al. [3, 4]. First, the system needs
to support addressing: the ability to refer to a part of the program representation
from the outside. Next, externalizability means that a piece of addressed state can
be exhaustively transferred between the system and the outside world. Finally, open
authoring requires that system behaviours can be changed by simply adding a new
expression containing addresses—in other words, anything can be overriden without
being erased. Of particular importance is how addresses are specified and what
extension points in the program they can refer to. The system may offer an automatic
mechanism that makes certain parts of a program addressable, or this task may be
delegated to the programmer.
Cascading Style Sheets (CSS): CSS is a prime example of a system that offers open

authoring with rich addressability mechanisms that are partly automatic (when
referring to tag names) and partly manual (when using element IDs and class names).
Given a web page, it is possible to modify (almost) any aspects of its appearance by
simply adding additional rules to a CSS file. The Infusion project [2] offers similar
customizability mechanisms, but for behaviour rather than just styling.
Object Oriented Programming and Aspect Oriented Programming: in conventional

programming languages, customization is done by modifying the code itself. OOP
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and AOP make it possible to do so by adding code independently of existing program
code. In OOP, this requires manual definition of extension points, i.e. interfaces and
abstract methods. Functionality can then be added to a system by defining a new class
(although injecting the new class into existing code without modification requires
some form of configuration such as a dependency injection container). AOP systems
such as AspectJ [35] provides a richer addressing mechanism. In particular, it makes
it possible to add functionality to the invocation of a specific method (among other
options) by using the method call pointcut. This functionality is similar to advising in
Pilot [65].

4.4.3 Dimension: self-sustainability
For most programming languages, programming systems, and ordinary software
applications, if one wants to customize beyond a certain point, one must go beyond
the facilities provided in the system itself. Most programming systems maintain a clear
distinction between the user level, where the system is used, and implementation level,
where the source code of the system itself resides. If the user level does not expose
control over some property or feature, then one is forced to go to the implementation
level. In the common case this will be a completely different language or system,
with an associated learning cost. It is also likely to be lower-level—lacking expressive
functions, features or abstractions of the user level—which makes for a more tedious
programming experience.

It is possible, however, to carefully design systems to expose deeper aspects of their
implementation at the user level, relaxing the formerly strict division between these
levels. For example, in the research system 3-Lisp [60], ordinarily built-in functions
like the conditional if and error handling catch are implemented in 3-Lisp code at the
user level.

The degree to which a system’s inner workings are accessible to the user level, we
call self-sustainability. At the maximal degree of this dimension would reside “stem
cell”-like systems: those which can be progressively evolved to arbitrary behavior
without having to “step outside” of the system to a lower implementation level. In a
sense, any difference between these systems would be merely a difference in initial
state, since any could be turned into any other.

The other end, of minimal self-sustainability, corresponds to minimal customizabil-
ity: beyond the transient run-time state changes that make up the user level of any
piece of software, the user cannot change anything without dropping down to the
means of implementation of the system. This would resemble a traditional end-user
“application” focused on a narrow domain with no means to do anything else.

The terms “self-describing” or “self-implementing” have been used for this property,
but they can invite confusion: how can a thing describe itself? Instead, a system that
can sustain itself is an easier concept to grasp. The examples that we see of high
self-sustainability all tend to be Operating System-like. UNIX is widely established
as an operating system, while Smalltalk and Lisp have been branded differently.
Nevertheless, all three have shipped as the operating systems of custom hardware, and
have similar responsibilities. Specifically: they support the execution of “programs”;
they define an interface for accessing and modifying state; they provide standard
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libraries of common functionality; they define how programs can communicate with
each other; they provide a user interface.

UNIX: Self-sustainability of UNIX is owed to the combination of two factors. First,
the system is implemented in binary files (via ELF15) and text files (for configuration).
Second, these files are part of the user-facing filesystem, so users can replace and
modify parts of the system using UNIX file interfaces.

Smalltalk and COLAs: Self-sustainability in Smalltalk is similar to UNIX, but at a finer
granularity and with less emphasis on whether things reside in volatile (process) or
non-volatile (file) storage. The analogous points are that (1) the system is implemented
as objects with methods containing Smalltalk code, and (2) these are modifiable using
the class browser and code editor. Combined Object Lambda Architectures, or COLAs
[54], are a theoretical system design to improve on the self-sustainability of Smalltalk.
This is achieved by generalizing the object model to support relationships beyond
classes.

4.4.4 References
In addition to the examples discussed above, the proceedings of self-sustaining systems
workshops [29, 28] provides numerous examples of systems and languages that are
able to bootstrap, implement, modify, and maintain themselves; Gabriel’s analysis of
programming language revolutions [21] uses advising in PILOT, related Lisp mecha-
nisms, and “mixins” in OOP to illustrate the difference between the “languages” and
“systems” paradigms.

4.4.5 Relations
Flattening and factoring (Section 4.3.7): related in that “customizability” is a form
of creating new programs from existing ones; factoring repetitive aspects into a
reusable standard component library facilitates the same thing.
Interaction (Section 4.1): this determines whether there are separate stages for
running and writing programs and may thus influence what kind of customization
is possible.

4.5 Automation

How far does the system remove the need to spell out implementation in minute
detail?
Ultimately, at the hardware level, computers are primitive calculating machines.

They require a full and exact specificiation of the instructions to run. Ever since the
1940s, programmers have envisioned that some form of “automatic programming”
will alleviate the need for tediously specifying details at this level. While this level
still remains today, many aspects of the task of “programming” can and have been
automated.

15 Executable and Linkable Format.
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Automation can take a number of forms. Extracting common functionality into a
library may be merely good use of factoring (Section 4.3.7), but to the user of the
library, this may appear as automation. In high-level programming languages, many
details are also omitted; those are filled in by the compiler. Finally, the program may
also be executed by a more sophisticated runtime that fills in details not specified
explicitly, such as when running an SQL query or using a logic programming system
like Prolog.

4.5.1 Remark: notations
Even with high-level of automation, programming involves manipulating some pro-
gram notation. In high-level functional or imperative programming languages, the
programmer writes code that typically has clear operational meaning. When using
more declarative programming like SQL, Prolog or Datalog, the meaning of a pro-
gram is still unambiguous, but it is not defined operationally—there is a (more or
less deterministic) inference engine that solves the problem based on the provided
description. Finally, systems based on programming by example step even further away
from having clear operational meaning—the program may be simply a collection of
sample inputs and outputs, from which a (typically non-deterministic) engine infers
the concrete steps of execution.

4.5.2 Dimension: degrees of automation
There are many degrees of automation in programming systems, but the basic mech-
anism is always the same—given a program, some logic is specified explicitly and
some is left to a reusable component that can do the rest. In the case of library reuse,
the reusable component is just the library. In the case of higher-level programming
languages, the reusable component may include a memory allocator or a garbage
collector. In case of declarative languages or programming by example, the reusable
component is a general purpose inference engine.

Higher levels of automation require more complex reusable components than lower
levels. This is a difference between level of automation and factoring—producing
systems with higher level of automation requires more than simply extracting (factor-
ing) existing code into a reusable component. Instead, it requires doing more work
and introducing a higher level of indirection between the program and the reusable
component.

There is also an interesting (and perhaps inevitable) trade-off. The higher the level
of automation, the less explicit the operational meaning of a program. This has a
wide range of implications. Smaragdakis [59] notes, for example, that this means the
implementation can significantly change the performance of a program.

4.5.3 Example: programming by example
An interesting case of automation is programming by example [39]. In this case, the
user does not provide even a declarative specification of the program behavior, but
instead specifies sample inputs and outputs. A more or less sophisticated algorithm
then attempts to infer the relationship between the inputs and the outputs. This may,
for example, be done through program synthesis where an algorithm composes a
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transformation using a (small) number of pre-defined operations. Programming by
example is often very accessible and has been used in spreadsheet applications [25].

4.5.4 Example: next-level automation
Throughout history, programmers have always hoped for the next level of “automatic
programming”. As observed by Parnas [49], “automatic programming has always been
a euphemism for programming in a higher-level language than was then available to
the programmer”.

We may speculate whether Deep Learning will enable the next step of automation.
However, this would not be different in principle from existing developments. We can
see any level of automation as using artificial intelligence methods. This is the case for
declarative languages or constraint-based languages—where the inference engine
implements a traditional AI method (GOFAI, i.e., Good Old Fashioned AI).

4.5.5 Relations
Flattening and factoring (Section 4.3.7: One typically automates the thing at the
lowest level in one’s factoring (by making the lowest level a thing that exists outside
of the program—in a system or a library)

4.6 Errors

What does the system consider to be an *error*? How are they prevented and handled?
A computer system is not aware of human intentions. There will always be human

mistakes that the system cannot recognize as errors. Despite this, there are many that
it can recognize, and its design will determine which human mistakes can become
detectable program errors. This revolves around several questions: What can cause an
error? Which ones can be prevented from happening? How should the system react
to errors?

Following the standard literature on errors [55], we distinguish four kinds of errors:
slips, lapses, mistakes and failures. A slip is an error caused by transient human
attention failure, such as a typo in the source code. A lapse is similar but caused by
memory failure, such as an incorrectly remembered method name. A mistake is a
logical error such as bad design of an algorithm. Finally, a failure is a system error
caused by the system itself that the programmer has no control over, e.g. a hardware
or a virtual machine failure.

4.6.1 Dimensions: error detection
Errors can be identified in any of the feedback loops that the system implements. This
can be done either by a human or the system itself, depending on the nature of the
feedback loop.

Consider three examples. First, in live programming systems, the programmer
immediately sees the result of their code changes. Error detection is done by a human
and the system can assist this by visualizing as many consequences of a code change
as possible. Second, in a system with a static checking feedback loop (such as syntax
checks, static type systems), potential errors are reported as the result of the analysis.
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Third, errors can be detected when the developed software is run, either when it is
tested by the programmer (manually or through automated testing) or when it is run
by a user.

Error detection in different feedback loops is suitable for detecting different kinds
of errors. Many slips and lapses can be detected by the static checking feedback loop,
although this is not always the case. For example, consider a “compact” expression
geography where small changes in code may result in large changes of behaviour. This
makes it easier for slips and lapses to produce hard to detect errors. Mistakes are
easier to detect through a live feedback loop, but they can also be partly detected by
more advanced static checking.

4.6.2 Example: static typing
In statically typed programming languages like Haskell and Java, types are used
to capture some information about the intent of the programmer. The type checker
ensures code matches the lightweight specification given using types. In such systems,
types and implementation serve as two descriptions of programmer’s intent that need
to align; what varies is the extent to which types can capture intent and the way in
which the two are constructed; that is, which of the two comes first.

4.6.3 Examples: TDD, REPL and live coding
Whereas static typing aims to detect errors without executing code, approaches based
on immediate feedback typically aim to execute (a portion of) the code and let the
programmer see the error immediately. This can be done in a variety of ways.

In case of test-driven development, tests play the role of specification (much like
types) against which the implementation is checked. Such systems may provide more
or less immediate feedback, depending on when tests are executed (automatically in
the background, or manually). Systems equipped with a read-eval-print loop (REPL)
let programmers run code on-the-fly and inspect results. For successful error detection,
the results need to be easily observable: a printed output is more helpful than a hidden
change of system state. Finally, in live coding systems, code is executed immediately
and the programmer’s ability to recognize errors depends on the extent to which
the system state is observable. In live coded music, for example, you hear that your
code is not what you wanted, providing an easy-to-use immediate error detection
mechanism.

4.6.4 Remark: eliminating latent errors
A common aim of error detection is to prevent latent errors, i.e. errors that occured
at some earlier point during execution, but only manifest themselves through an
unexpected behaviour later on. For example, we might dereference the wrong memory
address and store a junk value to a database; we will only find out upon accessing
the database. Latent errors can be prevented differently in different feedback loops.
In a live feedback loop, this can be done by visualizing effects that would normally
remain hidden. When running software, latent errors can be prevented through a
mechanism that detects errors as early as possible (e.g. initializing pointers to null
and stopping if they are dereferenced.)
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Elm and time-travel debugging. One notable mechanism for identifying latent errors
is the concept of time-travel debugging popularized by the Elm programming language.
In time-travel debugging, the programmer is able to step back through time and see
what execution steps were taken prior to a certain point. This makes it possible to
break execution when a latent error manifests, but then retrace the execution back to
the actual source of the error.

4.6.5 Dimension: error response
When an error is detected, there are a number of typical ways in which the system can
respond. The following applies to systems that provide some kind of error detection
during execution.

It may attempt to automatically recover from the error as best as possible. This
may be feasible for simpler errors (slips and lapses), but also for certain mistakes
(a mistake in an algorithm’s concurrency logic may often be resolved by restarting
the code.)
It may proceed as if the error did not happen. This can eliminate expensive checks,
but may lead to latent errors later.
It may ask a human how to resolve the issue. This can be done interactively, by
entering into a mode where the code can be corrected, or non-interactively by
stopping the system.

Orthogonally to the above options, a system may also have a way to recover from
latent errors by tracing back through the execution in order to find the root cause. It
may also have a mechanism for undoing all actions that occurred in the meantime,
e.g. through transactional processing.
Interlisp and Do What I Mean (DWIM). Interlisp’s DWIM facility attempts to auto-

matically correct slips and lapses, especially misspellings and unbalanced parentheses.
When Interlisp encounters an error, such as a reference to an undefined symbol, it
invokes DWIM. In this case, DWIM then searches for similarly named symbols fre-
quently used by the current user. If it finds one, it invokes the symbol automatically,
corrects the source code and notifies the user. In more complex cases where DWIM
cannot correct the error automatically, it starts an interaction with the user and lets
them correct it manually.

4.6.6 Relations
Feedback loops: Error detection always happens as part of an individual feedback
loop. The feedback loops thus determine the structure at which error detection can
happen.
Automation: A semi-automatic error recovery system (such as DWIM) implements a
form of automation. The concept of antifragile software [43] is a more sophisticated
example of error recovery through automation.
Expression geography: In an expression geography where small changes in notation
lead to valid but differently behaved programs, a slip or lapse is more likely to lead
to an error that is difficult to detect through standard mechanisms.
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4.6.7 References
The most common error handling mechanism in conventional programming languages
is exception handling. The modern form of exception handling has been described in
[23]; [56] documents the history and influences of Software Engineering on exception
handling. The concept of antifragile software [43] goes further by suggesting that
software could improve in response to errors. Work on Chaos Engineering [8] is a
step in this direction.

[55] analyses errors in the context of human errors and develops a classification of
errors that we adopt. In the context of computing, errors or miscomputation has been
analysed from a philosophical perspective [17, 15]. Notably, attitudes and approaches
to errors also differ for different programming subcultures [52].

4.7 Adoptability

How does the system facilitate or obstruct adoption by both individuals and commu-
nities?
We consider adoption by individuals as the dimension of Learnability, and adoption

by communities as the dimension of Sociability.

4.7.1 Dimension: learnability
Mainstream software development technologies require substantial effort to learn.
Systems can be made easier to learn in several ways:

Specializing to a specific application domain.
Specializing to simple small-scale needs.
Leveraging the background knowledge, skills, and terminologies of specific com-
munities.
Supporting learning with staged levels of complexity and assistive development
tools [18]. Better Feedback Loops can help (Section 4.1).
Collapsing heterogeneous technology stacks into simpler unified systems. This
relates to the dimensions under Conceptual Structure (Section 4.3).

FORTRAN was a breakthrough in programming because it specialized to scientific
computing and leveraged the background knowledge of scientists about mathematical
formulas. COBOL instead specialized to business data processing and embraced the
business community by eschewing mathematics in favor of plain English.

LOGO was the first language explicitly designed for teaching children. Later BASIC
and Pascal were designed for teaching then-standard programming concepts at the
University level. BASIC and Pascal had second careers on micropocessors in the 90’s.
These microprocessor programming systems were notable for being complete solutions
integrating everything necessary, and so became home schools for a generation of
programmers. More recently languages like Racket, Pyret, and Grace have supported
learning by revealing progressive levels of complexity in stages. Scratch returned
to Logo’s vision of teaching children with a graphical programming environment
emphasizing playfulness rather than generality.
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Some programming languages have consciously prioritized the programmer’s ex-
perience of learning and using them. Ruby calls itself a programmer’s best friend by
focusing on simplicity and elegance. Elm targets the more specialized but still fairly
broad domain of web applications while focusing on simplicity and programmer-
friendliness. It forgoes capabilities that would lead to run-time crashes. It also tries
hard to make error messages clear and actionable.

If we look beyond programming languages per se, we find programmable systems
with better learnability. The best example is spreadsheets, which offer a specialized
computing environment that is simpler and more intuitive. The visual metaphor of
a grid leverages human perceptual skills. Moving all programming into declarative
formulas and attributes greatly simplifies both creation and understanding. Research
on Live Programming [26, 66] has sought to incorporate these benefits into general
purpose programming, but with limited success to date.

HyperCard and Flash were both programming systems that found widespread
adoption by non-experts. Like spreadsheets they had an organizing visual metaphor
(cards and timelines respectively). They both made it easy for beginners to get started.
Hypercard had layers of complexity intended to facilitate gradual mastery.

Smalltalk and Lisp machines were complex but unified. After overcoming the initial
learning curve, their environments provided a complete solution for building entire
application systems of arbitrary complexity without having to learn other technologies.
Boxer [11] is notable for providing a general-purpose programming environment—
albeit for small-scale applications—along with an organizing visual metaphor like
that of spreadsheets.

4.7.2 Dimension: sociability
Over time, especially in the internet era, social issues have come to dominate program-
ming. Much programming technology is now developed by open-source communities,
and all programming technologies are now embedded in social media communities
of their users. The nature of these communities often trumps purely technical and
individual considerations [41]. Some of the specific concerns of sociability are:

Easy integration into standard technology stacks, allowing incremental adoption,
and also easy exit if needed. This dynamic was discussed in the classic essay Worse
is Better [19] about how UNIX beat Lisp.
Backing by large corporations or widespread industry investments that ensures
economic sustainability.
An open-source community of volunteers investing their time, which has proven to
be as viable as financial support.
Easy sharing of code via package repositories or open exchanges. Prior to the
open-source era, commercial marketplaces were important, like VBX components
for VisualBasic. Sharing is impeded when languages have competing dialects and
libraries, like Scheme [68].
Friendly and helpful user communities on social media, for example Stack Overflow.
Such communities have to some extent replaced the traditional role of documenta-
tion.
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The tenor of the online community around a programming system can be its most
public attribute. Even before social media, Flash developed a vibrant community of
amateurs sharing code and tips. The Elm language invested much effort in creating a
welcoming community from the outset [9]. Attempts to reform older communities
have introduced Codes of Conduct, but not without controversy.

On the other hand, a cloistered community that turns its back on the wider world
can give its members strong feelings of belonging and purpose. Examples are Smalltalk,
Racket, Clojure, and Haskell. These communities bear some resemblance to cults,
with guru-like leaders, and fierce group cohesion.

The economic sustainability of a programming system can be even more important
than strictly social and technical issues. Adopting a technology is a costly investment
in terms of time, money, and foregone opportunities. Everyone feels safer investing in
a technology backed by large corporations that are not going away, or in technologies
that have such widespread adoption that they are guaranteed to persist. A vibrant
and mature open-source community backing a technology also makes it safer.

Unfortunately, all of these issues of sociability create barriers to new programming
systems targeting non-experts, and indeed the entire dimension of learnability. Large
internet corporations have invested mainly in technologies relevant to their high-end
needs. Open-source communities have only flourished around technologies for expert
programmers “scratching their own itch”. While there has been a flow of venture
funding into “no-code” and “low-code” programming systems, it is not clear how they
can become economically and socially sustainable. By and large, the internet era has
seen the ascendancy of expert programmers.

5 Conclusions

There is a renewed interest in developing new programming systems. Such systems
go beyond the simple model of code written in a programming language using a more
or less sophisticated text editor. They combine textual and visual notations, create
programs through rich graphical interactions, and challenge accepted assumptions
about program editing, execution and debugging. Despite the growing number of
novel programming systems, it remains difficult to evaluate the design of programming
systems and see how they improve over work done in the past. To address the issue, we
proposed a framework of “technical dimensions” that captures essential characteristics
of programming systems in a qualitative but rigorous way.

The framework of technical dimensions puts the vast variety of programming
systems, past and present, on a common footing of commensurability. This is crucial to
enable the strengths of each to be identified and, if possible, combined by designers of
the next generation of programming systems. As more and more systems are assessed
in the framework, a picture of the space of possibilities will gradually emerge. Some
regions will be conspicuously empty, indicating unrealized possibilities that could be
worth trying. In this way, a domain of “normal science” is created for the design of
programming systems.
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