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Abstract

Live programming environments promise to close the gap between writing programs and observing
their runtime behaviour. Live programming support needs to keep functioning for incomplete
programs, i.e. it needs to be error-tolerant, to keep this promise.

In this thesis, we present a live programming environment prototype that (1) provides a foun-
dation for error-tolerant IDE services in general and (2) offers error-tolerant support for live pro-
gramming by showing up-to-date runtime values of relevant expressions.

To accomplish this, we developed a structure editor that maintains the flexible and language-
independent interface of standard text editors, by incorporating a novel notion of incompleteness,
called construction sites.

We formalize the meaning of programs with syntax, binding and type errors by extending the
notion of (weak head) normal form and giving a denotational call-by-need semantics. Based on
this foundation, an interpreter can provide meaningful runtime information in practically all editor
states. Furthermore, the programming environment remains responsive and even provides partial
runtime information for lengthy or non-terminating computations.

This work suggests that there is a powerful synergy between error tolerance and live program-
ming support that could greatly benefit developer productivity.
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Chapter 1

Introduction

Programs often do not work as intended by the programmer the first time they are written. Even
if they do, they often need to be modified later because of changing requirements.

Furthermore, programs contain syntax and type errors that prevent their execution during a
large part of their development. Yoon and Myers find 44% of programs were syntactically malformed
based on 1460 hours of editor logs [26].

This leads to the familiar edit-compile-run cycle illustrated below.

Runtime behaviour/logic errors

Ready? No errors?

Edit Compile Run

Syntax/type errors

Figure 1.1: The traditional edit-compile-run cycle

Because syntax and type errors prevent programs from being executed, there exists a cognitive
gap between the writing and execution of programs. This impairs the learning experience of novices
and the productivity of professionals [2] because there is a delay in receiving runtime behaviour
feedback. Receiving this feedback as soon as possible can prevent the programmer from taking a
flawed approach to their task and spare them the time they would have needed to implement the
approach in full and resolve all the errors they encounter in doing so.

Furthermore, the lack of continuously available runtime behaviour feedback forces the program-
mer to “play computer in their head”, which is time-consuming and error-prone.

Programmers are often assisted in their tasks by the application they use to write code, called
the programming environment/integrated development environment (IDE). Live programming envi-
ronments promise to close this gap by offering uninterrupted information on the program’s runtime
behaviour, thus leading to the workflow illustrated in figure 1.2.
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Errors of all types/
runtime behaviour

Edit

Figure 1.2: The live programming cycle

In order to keep this promise, live programming environments need to be able to evaluate
code in any editor state. Furthermore, evaluation must not abort with an exception or result
in an uninformative undefined value when errors are encountered. Such results would defeat the
purpose of live programming features because the programmers receives very little new information.
Instead, the evaluation result should support the programmer in finding the source of the problem,
for example by showing context in the form of the values of relevant variables and expressions at
the time the error occurred (e.g. an array index being out of bounds).

In other words, it should not only be possible to run incomplete programs, but the result should
also include any information that could help the programmer find the source of the issue. Gathering
this information entails evaluating code that is computationally independent of the expression in
which the error occurred. For example, the left operand el of an addition term el + er can be
evaluated independently of the right operand and the resulting value should be available to the
programmer if the right operand er does not evaluate to a number and thus prevents the values
from being added together.

This is an example of the property we call error tolerance: to continue working in the presence
of errors to provide the most useful results possible. Ideally, evaluation should tolerate any kind of
error, e.g.

1. Syntax errors, such as a missing parenthesis

2. Type errors, such as find a function where a number is expected

3. Binding errors, such as an undefined variable

4. Logic errors, such as

(a) an array index being out of bounds

(b) diverging evaluation of an expression (e.g. the Ω-term from lambda calculus)

Note that we do not mean to argue that live programming environments should do the impos-
sible by showing a value where there is none (i.e. in the case of diverging evaluation). Instead,
the environment should show a maximally informative result, for example other values (ideally
relevant in the context of the diverging computation) and/or a partial result that shows how far
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the diverging evaluation has progressed. Of course, it is impossible to know whether the evaluation
of an expression will eventually halt or not [22], so the programming environment should produce
such results for every long-running evaluation. In fact, such results would only make the program-
ming environment more useful in cases of long-running computations, as long as full results are still
provided when they become available.

To provide maximally useful results, it is important to isolate errors. For example, a function
definition contains an opening parenthesis that lacks a closing counterpart, this should not affect
(the evaluation of) later definitions in the file. In other words, the syntax error should be isolated
to the definition or expression it is located in.

Error tolerance and isolation may also benefit other services that IDEs commonly provide. For
instance, an automatic formatter may indent code following the unmatched opening parenthesis
too far if the syntax error is not isolated. If it is, the following code could be indented properly.
Additionally, if there is an error in a type definition in some file or program module, error-tolerant
type systems could support the type checking of dependent files/modules (modules that import the
one with the errors).

Tolerance of syntax errors is commonly provided by error-correcting parsers, but these are
forced to guess at the programmer’s intent (where is the missing parenthesis supposed to go?) if
IDE services that rely on them demand error-free results. Even when IDE services technically could
function with a partial parse results, they are often automatically disabled in fear of generating
spurious errors. For example, a type checker might report that a variable lacks a definition if the
parser has not recovered in time from an error in the definition for the variable.

In general, we find a disappointing lack of error tolerance and live programming support in
programming environments. With regards to live programming support, we see problems with
current approaches that limit its use to certain application domains (e.g. data science or game
development). In other words, these approaches are not domain-agnostic. In other cases, we find
problems that harm the usability of the programming environment. We present a non-exhaustive
list of problems below:

1. Assumption of infinite loops that keep the program running. In this case, the “liveness”
originates from updates to a running program, such as a game or a program that plays a
melody on repeat (e.g. Fluxus [9] and Impromptu [20]). This excludes programs with short
typical run times (such as text-processing programs) because there is no time to the see the
effect of changes.

Additionally, relying on the presence of infinite loops in the program requires the programmer
to manually trigger relevant runtime behaviour in some cases.

2. Assumption of data with a natural visual representation. Some live programming environ-
ments [1] [13] intentionally choose a limited application domain to make demonstrating live
programming features easier. Typically, these are domains where there exists a natural way
of visualizing results, such as with diagrams or drawings.

In live programming environments that rely on this assumption, a decent presentation of com-
plex data-structures is typically lacking. Of course, a good visual representation is sometimes
more important for the domains for which these tools are intended (for example, education
or data-science), but in most domains a decent generic data presentation as a foundation is
required.
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3. The only information about runtime behaviour that is presented, is the program output.
Fluxus [9], Impromptu [20] and Observable [1] have this property. It is problematic because for
non-trivial programs, the output does not provide detailed insight into the runtime behaviour.
While the result of small changes may be clear, we can still only derive information about the
runtime values around the location of a change by reasoning backwards from the presented
output. Therefore, any programming environment with this property does not really free the
programmer from “playing computer in their head”.

4. The requirement of syntax error-tolerance is circumvented by replacing a standard text editor
with a structure editor that prevents these completely, as in Hazel [15], Lamdu [12] and ALX
[13] for example. This is often problematic because structure editors that prevent syntax errors
completely are less flexible than text editors. In short: the simplest method for transforming
an expression to a new one sometimes requires intermediate states with syntax errors. For
example, when moving the opening parenthesis in (3 ∗ 2 + 1) to enclose the addition term
(i.e. 3 ∗ (2 + 1)), we would normally delete and reinsert the opening parenthesis, but this is
not allowed because deleting it would introduce a syntax error. Some structure editors have
evolved to specifically make moving parentheses easier than it is with text editors, but the
general problem persists. We discuss more advanced examples in section 2.2.

Problem statement Before live programming environments can become a part of mainstream
software development practice, domain-agnostic and error-tolerant live programming environments
must be developed.

The aim of this thesis is to contribute towards their development by examining the use of a
novel notion of incompleteness, called construction sites, in a live programming environment.

In essence, constructions sites are (possibly empty) sequences of plain characters and other
structured pieces of programs called complete nodes. Construction sites are designed to isolate
syntax errors while allowing a structure editor to retain the flexibility of standard text editors.

Specifically, we attempt to answer the question:

Is it possible to keep IDE services functioning properly and provide useful runtime information
continuously, regardless of errors or application domain, based on (1) a structured representation

of programs that incorporates construction sites and (2) formal error-tolerant semantics?

Methods To answer the research question, a construction-site-based structure editor and error-
tolerant interpreter were developed and combined in a programming environment named “Frugel”.
This name is derived from “frugal”, but misspelled for disambiguation. It is inspired by how careful
the environment is with discarding information that might still be valuable in the future.

Overview of our approach Structure editors maintain a structured representation of the doc-
ument during editing. Usually, the structured representation used is an abstract syntax tree (AST)
where the nodes represent language constructs such as an expression or function definition.

A common approach to structure editing is inserting holes into the program based on the
programming language’s grammar. However, structure editors based on this approach sometimes
insert holes that the programmer wants to fill with an existing part of the program. Moving that
part of the program into the hole requires additional effort from the programmer.

Instead of inserting holes that can be filled in later, our structure editor decomposes the AST
node at which the cursor is located into a construction site node. This construction site contains
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the node’s components (characters and complete nodes) according to the grammar of the language
construct the node represents. Any character can be inserted into a construction sites. This
allows syntax errors to be introduced and thus enables the structure editor to retain the flexible
interface of text editors (resolving issue 4 of the list of problems we find in existing live programming
environments). Various examples can be found at the end of section 5.2.

Moreover, keystrokes are not coupled to the insertion of specific language constructs. The
complete nodes found in construction sites are the children of the AST node that was decomposed.
In combination with allowing arbitrary characters in construction sites, this makes the structure
editor work analogously for all (textual) programming languages.

Even the insertion of a character does not introduce a syntax error, the AST node under the
cursor is still decomposed. Syntactical correctness is checked afterwards using a traditional parser.
If the parser can parse the program without finding any errors, the construction site is resolved.
If it does find an error, this must be due to the last edit action and the construction site remains.
Because the AST is only affected at a single node, there is always an AST to fall back on if a syntax
error is found. IDE services can use the preserved structure of unaffected parts of the AST and
the complete node inside the construction site to continue operating properly. This preservation of
child nodes distinguishes this approach from the one where the editor simply allows unstructured
text at some locations.

If there are multiple construction sites, the parser may skip their contents to verify syntactical
correctness of the construction site that was last introduced. All combinations of which construction
sites are skipped should be considered to resolve all construction that do no longer contain a syntax
error sites in all cases. We describe the various options to realize this in section 5.4.

As a bonus, this approach allows the structure editor to clearly distinguish the characters that
cause parse errors from the rest of the program text. This way, our combination of careful decom-
position and reparsing support a more transparent form of error resilience than what is provided
by error-correcting parsers.

Construction sites are a language-agnostic concept, i.e. they can be incorporated in the struc-
tured representation of any language. The main requirements to instantiate our structure editor
for a language are a (slightly modified) parser and a way to traverse the structured representation
used to represent programs. As an example, we instantiate the structure editor with a small pure
programming language: λ-calculus extended with numbers, booleans and recursive binders.

As a simple example of an error-tolerant IDE service that relies on the structure editor, we
include a formatter that has the unique property that syntax errors never affect the formatting of
parts of the program below or above (in terms of lines of code) of the language construct in which
the syntax error is located. We also present a more advanced example of an error-tolerant IDE
service in the form of the formal foundations for and implementation of an interpreter that tolerates
syntax, binding and type errors.

Instead of supporting updates to a continuously running program, we think it is often much more
useful to show the effect of code changes on the behaviour of the program in circumstances specified
by the programmer. This removes the need for repeatedly triggering the relevant circumstances
for the runtime behaviour of interest and thus resolves issue 1 from the list presented before.
This approach is relatively simple to implement for the aforementioned extended λ-calculus, but
tackling major challenges such as handling I/O and testing with real-world programs did not fit in
the time constraints of this thesis. Because our example language still lacks I/O capabilities (and
the environment lacks mechanisms to handle this), specifying circumstances for runtime behaviour
of interest is limited to specifying an instance of a function application. For example, if f is a
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function and the expression f1 + f2 is evaluated, the programmer can pick the instance where f is
applied to 1 or the instance where f is applied to 2 when inspecting f ’s runtime behaviour.

We show the effect of code changes in a user interface similar to that of a time-travel-debugger
that is updated automatically after every edit. It shows the values of variables in scope at the
cursor (the evaluation environment), the value of the expression under the cursor and the result of
the full program. The specification of runtime behaviour of interest as described above is similar to
the way a time-travel-debugger supports browsing through different occurrences of a break-point.

This user interface resolves issues 2 and 3 from the list presented earlier, but it is also still
rudimentary. For example, the size that certain evaluation results take up on the screen is only
configurable using a number picker that the determines the depth to which the AST underlying
the result is rendered. Whether some nodes are rendered is determined one AST level at the time,
while it would be very useful to be able to pick nodes to render individually as well.

A more advanced interface could offer further benefits by supporting exploration of the compu-
tation in general, instead of just the results, and support the display of information from multiple
breakpoints simultaneously. We discuss this in more detail in section 8.4.

The data presented in this user interface is obtained using the error-tolerant interpreter. When
the program or cursor location changes, the interpreter runs again on the new program and collects
runtime information based on the new cursor location. While this is acceptable for the current
prototype, it is not clear that this approach performs well enough in real-world applications. See
section 8.2 for further discussion.

To realize error-tolerance, evaluation does not stop at an error (as with exceptions) nor do errors
“absorb” other values (as with undefined in many languages), but instead, errors only prevent
the evaluation of expressions that depend on the result of the evaluation during which the error
occurred. We formalize this principle in a denotational call-by-need semantics presented in section
6.2. Thus, we give a useful meaning to (incomplete) programs with errors.

Additionally, the interpreter also has a “limited” mode where recursion and the number of per-
formed reductions is limited by a configurable number. We call this mode “fuel-limited evaluation”.
This crude mechanism guarantees that the programming environment can also provide some run-
time information when normal evaluation diverges or is only taking a long time to produce results.
Furthermore, evaluation of the program does not need to be restarted if any additional evaluation
needs to be performed to present additional interactively requested runtime information.

Remarkably, we find that the measures providing this robustness can help to find the sources of
non-termination in some cases. In essence, the reductions that fail due to a shortage of fuel point
out the expressions which causes evaluation to diverge (when there is enough fuel to evaluate the
rest of the program). We show an example of this at the end of chapter 4.

Summary of contributions In summary, we make the following contributions:

1. We present the concept of construction sites, a novel notion of incompleteness that supports
the precise isolation of syntax errors.

2. We detail and develop an editor that uses the inherent structure in programming languages
and the flexibility of construction sites to provide a sound technical basis for error-tolerant
IDE services, while retaining the familiar flexible interface of text editors.

3. To support this claim, we develop and describe two completely error-tolerant IDE services:
a formatter and live programming support. Moreover, these form a domain-agnostic live
programming environment that aids the programmer in unique and intriguing ways.
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4. We formalize the error-tolerant dynamic semantics of a pure functional language with a call-
by-need reduction strategy. To the best of our knowledge, there our no other live programming
environments supporting this reduction strategy at the time of writing. We identify several
issues with the combination of live programming support and these semantics and describe
our solutions.

The reader may experiment with the programming environment online at
https://cdfa.github.io/frugel/ or download a (much better performing) native executable from
https://github.com/cdfa/frugel/releases. Still need to

create new
release with
bugfixes and
fuel-limited
evaluation
updates

Outline of the thesis First, we discuss the shortcomings of traditional (error-intolerant) IDEs
and the concept of construction sites in greater detail in chapter 2 and 3. In chapter 4, we show
several examples of how the error-tolerant live programming environment we developed can help
programmers find the sources of errors and prevent them. We then detail the design and imple-
mentation of the programming environment’s editor in chapter 5. Chapter 6 describes the two
IDE services included in our programming environment: the formatter and the interpreter (with
its formal foundations). Of course, this thesis does not stand alone in this field of research. We
discuss how our work relates to the other research in this field in chapter 7. Chapter 8 contains
a critical examination of the assumptions that went into our approach and the challenges left for
future work. Finally, we conclude the thesis in chapter 9.
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Chapter 2

Shortcomings of traditional IDEs

In most IDEs of today, IDE services are dependent on the error-free completion of certain program
analysis steps. Because the IDE services are not error-tolerant, they need to be disabled or work
incorrectly in the presence of errors.

This was already recognized as problematic by van de Vanter. in 1994 [23]. They name three
conditions for this situation: incorrectness, incompleteness and inconsistency (or the “I3” condi-
tions). Section 3.5 of their paper explains why intolerance for these conditions is problematic in
more detail than we do here.

In essence: this intolerance is problematic because programs with errors are very common during
software development and these are also the times when developers need accurate feedback the most.

In the best case, programming environments that require syntax and type correctness present
outdated information to the programmer when there are syntax or type errors. However, this still
leaves programmers unable to verify a reworked part of the program until all other errors are solved.

In the worst case (for example, when no runtime data is cached), systems with this limitation
only save the programmer from manually running the program when there are no more errors
(usually no more difficult than pressing a button).

Additionally, the requirement of global type-correctness exacerbates the drawbacks of a static
type system. Programmers working in a statically typed language cannot obtain runtime infor-
mation about a program when the type checker finds errors, while programmers working with a
dynamically typed language can. In development environments that do provide runtime infor-
mation, statically typed languages profit less from live programming features when global type
correctness is required.

There are two common approaches of the issue at the syntax level: error-correcting parsers and
projectional editors/structure editors that permit only syntax-correctness preserving edit actions.
Both have drawbacks that will be discussed in depth in section 2.1 and 2.2 respectively. For our
programming environment, we choose the structure editor option. We show how we can avoid the
inflexibility that is usually paired with these in chapter 5.

2.1 Shortcomings of error-correcting parsers

Almost all programming languages with industrial use have some form of error-correcting parser.
We’ve come to expect nothing less in an interactive environment. A missing parenthesis at the top
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of the file should not prevent the parser from checking the rest of the file. We do not mean to
argue that error correcting parsers are no good in general, but they do have some limitations and
drawbacks that can be transcended by structure editors and thus motivate their development.

Fundamentally, the problem is that error-correcting parsers need to guess at the programmer’s
intent, which is impossible to do correctly in general. As a concrete example of this, consider
the case of a missing parenthesis: f (g x z. In this case, there are three strong candidates for
correction:

1. Removing the opening parenthesis, resulting in f g x z.

2. Adding a closing parenthesis after x, resulting in f (g x) z

3. Adding a closing parenthesis after z, resulting in f (g x z)

There is simply no information in the text that indicates which of these corrections is the
intended one and the number of options increases quickly with the size of the expression and the
number of errors.

Nevertheless, various heuristics have been developed to find the most likely intended correction.
As an indication of their general performance, consider the following recently developed error-
correcting parsers.

1. The error-recovering PEG-based (Parsing Expression Grammar) parser by Medeiros et al.[18]
(2020). It only performs the intended recovery in 37% to 64% of cases (depending on the
grammar; or 63% to 81% with manual intervention).

2. The SGLR parser by Kats et al. (2009). It only performs the intended recovery in 60% of
cases and produces spurious errors in 10% of cases.

An example of a heuristic that, to the best knowledge of the author, has not been explored
yet is the use of type information. Options that produce less type errors are more likely to be the
intended one.

While this may seem promising, this heuristic also suffers from the tunnelling problem that
plagues strict structure editors. This problem will be detailed in section 2.2, but in short: this
quickest way to transform a program to the desired state will probably introduce type and syntax
errors. While this heuristic may be accurate in the stage where the introduced errors are resolved,
the heuristic may actually do worse than plain guessing in the stage where the errors are introduced.
It is not clear that this results in a net improvement.

Of course, better heuristics will be found in the future, but people have been working on this
since at least 1963[11]. This motivates us to look into different approaches.

It should be noted that when a traditional IDE attempts to provide feedback on the static or
even dynamic semantics of a program while a parse error is present, many more spurious errors may
be generated. Because of this, many IDEs disable these functions when parse errors are reported.
In other words, performing an unintended correction can easily result in unexpected spurious error
messages down the line.

Apart from performing unintended recoveries and reporting spurious errors, one more thing can
go wrong: errors may be missing because the parser did not recover in time to detect it. This
problem is not very severe, but it does add to the inadequacy observed from these parsers.

In conclusion, error correction does improve parsers significantly, but not to satisfactory levels.
The fact that unintentional corrections can easily lead to spurious errors during subsequent analyses
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makes them unsuitable for programming environments that combine live programming and error-
tolerance.

2.2 Shortcomings of strict structure editors

A different approach that does provide a suitable basis for up-to-date runtime information is that
of a structure editor. Structure editors attempt to improve upon the editing experience provided by
standard text editors by using the structured nature of a document. This enhanced experience might
include visual elements or the structure might enable new edit actions (for example, refactoring
actions).

They distinguish themselves from traditional text editors by performing edits directly on the
structured representation of the document instead of on the textual one. Usually, this structured
representation allows fewer states than a textual one. While it might sound great to have it
be “impossible to make syntax errors”, this often causes usability issues in practice because the
document has become inflexible or its manipulation relatively complicated.

An example of these issues is the tunnelling problem. We attribute its identification to Hazel
contributors, but cannot find a proper reference. It turns out that in many cases, the shortest (or
at least simplest) sequence of edits that would lead to the desired document state would go through
one or more syntactically incorrect document states.

This problem is often demonstrated by trying to move parentheses, but some structure editors
have evolved to handle this use case well. So instead, we will give a more advanced example: consider
the expression <x> + <y> where <x> and <y> are both large subexpressions. The objective is to
convert it to a record with the left and right summand as fields, i.e. {left: <x>, right: <y>}.
What the easiest approach is, depends on the editor being used, but it often comes down to first
constructing a new record with the desired field names, cut-and-pasting <x> and <y> into the right
positions and finally deleting the old expression (if cut and paste is supported at all, which is often
not the case because it requires a structure preserving clipboard). In any case, it seems difficult to
make it simpler than the process in a text editor: add curly braces at the start and end, replace
the plus sign with a comma and add the field names, all in any order that seems convenient.

Thus, restricting the user to edit action that preserve syntactic correctness makes the document
inflexible and therefore complicates editing instead of easing it. Structure editors which are strict in
this correctness-preserving requirement might rather be called structure constructors. The report
by Voelter et al. provides a more extensive overview of the issues that plague them [24]. Voelter
et al. report that these issues can be effectively mitigated by emulating the experience of standard
text editors, which is the approach Frugel takes as well.

While the mitigations developed in their paper from 2014[24] are very language-specific and
ad-hoc, they are later developed into the more principled and general notion of grammar cells[25].
The differences between their approach and the one taken by Frugel are explained in more detail
in section 7.1

Another drawback of the structure-editor-approach in general is that it tightly ties the editor to
a certain language because the edit actions themselves now depend on the structured representation
of the document. This makes it harder to prevent duplicating work when you would you like many
IDEs to support a language and/or one IDE to support many languages.

Finally, if the editor refuses to use a parser altogether and does not store the program on disk
as text, integration with other existing software development tools like version control and search
is inhibited.
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Chapter 3

Construction sites

Due to the issues mentioned above, a non-strict variation of the structure-editor-approach was
developed for Frugel. The result is a structure editor where the requirement of preserving syntactic
correctness on edit actions is relaxed. Where the structured representation cannot be preserved,
construction sites are inserted.

What these construction sites are and how they can be integrated into the structured represen-
tation of any language is the topic of this section.

3.1 Concept and terminology

The concept of construction sites is inspired by Hazel’s non-empty type holes [15], but translated
to the syntax level. Similarly to Hazel’s type hole, construction sites act as a membrane around an
error to isolate it from the rest of the program. Construction sites can also be empty and inserted
into the program with their own syntax, but there is no syntax for non-empty construction sites.
Instead, non-empty construction sites are created by the editor when the programmer performs a
transformation that leads to a syntax error.

The contents of a construction site are called node components. These are either plain characters
or complete AST nodes. These complete AST nodes may still be analysed and contribute to the
feedback presented by the editor.

When the contents of a construction site become syntactically correct, the membrane dissolves
(the construction site node in the AST is replaced by the root node representing the successfully
parsed node components).

3.2 ASTs with construction sites

Construction sites are a language independent concept. It should be possible to integrate them into
any structured language by incorporating them in the data structures used to represent a language’s
AST and modifying the parser and grammar as described in section 5.5.

However, to facilitate concrete examples, we will use a λ-calculus derivative as an example
throughout this report. The purpose of the notations given in this section is only to facilitate such
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examples. They correspond with the data-structures used in the implementation, but they are not
meant as formal grammars used by the parser.

We will first review a notation for a simple extension of λ-calculus:

Expr e ::= x | n | λx .
= e | e e | e+ e

This variant of λ-calculus has the usual forms for variables (x), abstraction (λx
.
= e) and

application (e e), but is extended with forms for natural numbers (n) and addition (e+ e).
We will now incorporate construction sites into this notation. With c ranging over characters,

we get:

Expr e ::= x | n | λx .
= e | e e | e+ e | nc

Cmps nc ::= i∗

Comp i ::= c | Expr

Construction sites are denoted with a yellow background, as in x . Node components are
represented with the non-terminal nc. When an AST node is decomposed into node components,
all literal parts (such as “λ”) become normal characters and all child nodes become complete nodes.
The notation for empty construction sites and complete nodes is and Expr respectively.

We use Expr instead of e because complete nodes occur in the parser input stream as AST
nodes and their textual representation does not need to be parsed. As an example, consider 1 +

+ 2 + 3 λ+ x . This example contains two construction sites: one enclosing the right summand

of the first + and one empty construction site. The first item in the first construction site is a
complete node representing the sum of the second construction site, 2 and 3. Then follow three
characters, λ, + and x.

The reason for the first construction site is the occurrence of λ . If it were removed, x would
become the fourth summand in the expression. Note that because + is left-associative, the + in

the construction site would belong to the root node of the parsed expression and + 2 + 3 would
be the left child of the root node.

3.3 ASTs with multiple AST node types

The grammar presented above is unrealistically simple; all real-world languages have multiple types
of AST nodes. Since extension of ASTs with construction sites to languages with multiple types of
AST nodes is not completely trivial, we will extend our example language slightly.

Our extension consists of where-clauses and auxiliary definitions. The new notation looks as
follows:

Prog p ::= e[w] | nc
Expr e ::= x | n | λx .

= e | e e | e+ e | nc
Where w ::= where d+ | nc
Decl d ::= x = e | nc
Cmps nc ::= i∗

Comp i ::= c | Expr | Where | Decl
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We use a+ and [a] to denote one or more of an item and an optional item, respectively. Aside
from the obvious additions of Prog, Decl and Where, the notation for Comp has also been extended.

Adding a new type of node to a grammar with construction sites raises two questions: should the
node have a construction site form and should it be possible for the node to be a node component.
To answer the first question, we consider what information can be derived from a complete node in
comparison to a construction site with only its parts. For the forms of Expr this is the most clear:
more information can be derived from an application term than from two separate expressions and
similarly for an abstraction term compared with a sequence of characters and an expression.

For auxiliary definitions, the extra information lies in their purpose of binding: a complete
definition node can add a new variable to the scope, but an identifier followed by an expression in
an unstructured list does not have the same semantics. A where clause delimits a scope and can
therefore prevent name clashes where a series of definition would not.

For the second question, we should also consider whether the added node can result from a
decomposition of other nodes. For the top-level Prog node this is not the case and therefore it does
not need a form for the Cmps node.

In summary, construction sites can be added to any structured language by considering these
questions for each data structure in the structured representation and adding construction site
variants accordingly.
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Chapter 4

Motivating examples

In this chapter, we discuss some examples that demonstrate the features of our programming
environment. The screenshot in figure 4.1 provides an overview of the interface. We describe its
elements in the caption.

Figure 4.1: The complete interface of our programming environment. Various panels are annotated:
(1) a panel with a button to format (a.k.a. pretty-print) the program and other controls; (2) the
program being edited with a list of errors below; (3) the normal form of the main expression
(factorial 3); (4) the normal form any variables in scope at the cursor (currently on n in the
condition of the if-term); and (5) the normal form of the expression under the cursor. Between 4
and 5, there is a panel similar to 4 for definitions in scope (only factorial in this case), but this
panel is collapsed. The program shown is a definition of the factorial function where the recursive
application is misspelled. Therefore, it cannot be reduced.
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Tunnelling For our first example, consider another instance of the tunnelling problem from
section 2.2: moving the multiplication term in (4 ∗ 2 + 3) outside the parentheses, changing it
to 4 ∗ (2 + 3). To recapitulate, this is a problem for strict structure editors because the simple
approach of deleting and re-inserting the parenthesis is not possible because it would lead to a
syntax error.

Because our structure editor is not strict, this approach is possible and we observe 4 ∗ 2 + 3 )

as the intermediate state. Because the rest of the programming environment is error-tolerant, its
features keep functioning for these intermediate states. For example, the formatter would still insert
whitespace in the complete node if it was missing and the interpreter will evaluate this expression

to 11 ) . As expected, inserting a parenthesis in front of the “2” results in 4 ∗ (2 + 3).

Syntax error isolation We claimed before that we can isolate the syntax errors we allow in
the structure editor. We will now demonstrate this with an example: consider writing a function
that takes an argument x, adds 4 and then multiplies this with a larger term. Writing the function

left-to-right, we encounter the state λx
.
= x+4∗f λd

.
= . We are in the process of writing a lambda

term as an argument to f , but we forgot to add parentheses around the addition term.
Assuming the function is encountered during the evaluation of the main expression, the live

programming features of our editor also help to catch this error. For example, if the function is

applied to an argument that evaluates to 3 and f λd
.
= evaluates to an expression 〈y〉 that prevents

the reduction of the multiplication term (which is likely given the unfinished lambda term), the
body of the function evaluates to 3 + 4 ∗ 〈y〉 instead of 7 ∗ 〈y〉. This would be visible in the main
expression normal form (panel 3 in figure 4.1).

In any case, we can insert the missing parentheses like we would in a standard text editor.
Because this happens one by one, this will introduce a new construction site containing the expres-
sion the cursor was on. Because the syntax error from the unfinished lambda term is isolated in a
different construction site, the new construction site can be resolved when the second parenthesis
is inserted. This confirms that all parentheses are now balanced and the unfinished lambda term is
the only remaining issue.

The benefits of this kind of detailed and reliable syntactic feedback are small in a trivial example
such as this. We think it can be helpful during larger refactorings nevertheless, but have not found
the time to confirm this with a user study.

The larger benefit of this approach as a whole is that IDE services dependent can use the
recovered AST to provide more advanced feedback despite the program’s incomplete state. In
the case above, the interpreter can show that the body of the function now indeed evaluates to
7 ∗ 〈y〉. In the case of more complex refactorings, this enables the programmer to catch mistakes
before the refactoring reaches a syntactically correct state. Furthermore, this feedback may help
the programmer work out how to complete the rest of the program (e.g. what the body of the
unfinished lambda term should be) and prevent further errors.

Error-tolerant evaluation We would not get the benefits mentioned above if evaluation was
not tolerant of type and binding errors as well. Specifically, evaluation does not stop in the event
of an error (as with exceptions) nor do errors absorb other values (as with undefined), but instead
evaluation continues around errors.

This is already visible in the previous example because (3 + 4) in (3 + 4) ∗ 〈y〉 is evaluated to 7
even though the multiplication term is not reducible (we assumed 〈y〉 was not a number).
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We will now give two more examples of when this is useful. First, consider the expression
(λf

.
= f 2 + 8) (λnumerator

.
= λdenominator

.
= numerator/denominator). This expression

contains a type error because f is given too few arguments.

This evaluates to λdenominator
.
= 2/denominator + 8. In this case, the construction site is

used as a means of annotation of the error instead of isolation. The reason we use construction
sites instead of a traditional red underline is that construction sites are much clearer when they are

nested, e.g. 1+ 2 + 3 instead of 1+2+
::

3
:
. A dedicated annotation may replace these construction

sites in the future.
The key benefit this example demonstrates is that the programmer gets type errors even without

static type checking. However, unlike static type checking, the code is only checked when it is
evaluated by the main expression. Consequently, this method only proves there are no type errors
when the main expression covers alls branches of the program. Therefore, static type checkers
remain useful. We refer the reader to the Hazelnut calculus by Omar et al. [15] for an excellent
example of an error-tolerant type system.

The type errors generated by evaluation do have an advantage over the statically generated ones,
though. The ill-typed value and the surrounding successfully evaluated values provide information
that can help resolve the issues. The variable names in the example above make clear that we are
specifically missing the denominator argument. In contrast, a statically generated type error would
only say we need a number.

One of the largest benefits of having a static type checker is that it makes type errors readily
available. Error-tolerant evaluation can do the same for errors that would typically require a
dependent type system (and therefore extra effort from the programmer in the form of proofs).
Suppose the programming language supports array literals in the form of [1, 2, 3] and a primitive
operation index : Int → Array(a) → a1. The programming environment would automatically

report that the expression (λxs
.
= index 0 xs + index 2 xs)[1, 2] evaluates to 1 + index 2 [1, 2] .

This works even when the literal values are replaced with variables and the value’s properties
become complex (as long as the program actually makes use of the property).

Seamless debugging We will now continue with examples specifically demonstrating the live
programming features. The feedback provided by the live programming features of our programming
environment provide similar information to that provided by a time-travel-debugger. However, in
contrast to traditional debuggers, the information is available seamlessly, i.e. the programmer
does not need to take any action to receive it. Additionally, the execution of the program is
navigated automatically based on cursor position, which removes the need for adding break-points
every time. However, the approach we developed for this is not yet sufficient for real-world usage
because our example language lacks I/O and this significantly complicates debugging (see section
8.1). Additionally, we are still missing stack-trace-based navigation (i.e. stepping out of or back
into function applications).

Consider the implementation of Euler’s algorithm below:

1These are currently not implemented in our example language)
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gcd 12 9
where
gcd = λa

.
= λb

.
= if b == 0
then b
else gcd b (a % b)

Here, we use % for the modulo operation. Our programming environment shows that the result
of the main expression is 0, which is incorrect. To inspect, we move the cursor to the only non-
recursive case, the b in then b. Panel 5 from figure 4.1 shows the value of this node is indeed
0. A quick look in panel 4 (which we call the context inspector) will also show that b = 0 and
a = 3, which is the correct answer. The programmer may now see that simply replacing the b under
the cursor with a resolves the issue. After this edit, the programming environment immediately
confirms this by showing 3 for the result of the main expression.

The gcd function is evaluated 3 times in total, but with the cursor at its current location, the
programming environment only shows the last instance because this is the only one where the
branch with the cursor is evaluated. As this example demonstrates, this can help the programmer
find the relevant instance more quickly.

Additionally, this feature may help narrow down the source of the issue because it cannot be in
branches that are not evaluated.

Non-termination robustness One fundamental issue that arises when we evaluate potentially
unfinished code automatically is that we frequently encounter expressions without normal forms.
These cases must not make the programming environment unresponsive because the live program-
ming features could become a nuisance more than a delight otherwise. Ideally, the impact of these
cases on the displayed runtime information is also minimized. In our solution, we distinguish be-
tween expressions only lacking a full normal forms and expressions lacking weak-head normal forms
as well.

First, all panels that show normal forms can be configured (using the number picker in the
header) to limit the rendering of expressions to a certain depth. Combined with the “lazy” normal-
ization of expressions (the normalization of parts of the normal form that are not shown is deferred
until those parts are requested), this constitutes a crude solution to the problem for expressions
lacking full normal forms.

Consider the following implementation of the factorial function:

factorial 6
where
factorial = λn

.
= if n ≤ 1
then n
else n ∗ factorial (n− 1)

With the cursor on factorial in the main expression, panel 5 will show its definition. However,
since the function is recursively defined, the definition is substituted for the recursive application
forever, yielding an infinitely large expression. But when the rendering depth is limited to 20,
subexpressions are elided after 4 iterations, showing:
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λn
.
= if n ≤ 1
then n
else n ∗ ( if (n− 1 ≤ 1

then n− 1
else (n− 1) ∗ ( if n− 1− 1 ≤ 1

then n− 1− 1
else (n− 1− 1) ∗ ( if ...

else ...)))
then ...

While this technique’s primary purpose is keeping the programming environment responsive,
this example shows that it can also reveal patterns generated by the recursion (i.e. the repeating
n− 1− 1− ...). There are more benefits from having a tool to interactively explore values, but we
leave this to the imagination of the reader since this is not the subject of this thesis.

To minimize the effects of expressions that also lack a weak head normal form, the programming
environment allows the programmers to limit evaluation to a number of steps using the controls in
panel 1. We call this number the fuel limit and this mode of evaluation fuel-limited evaluation. But
instead of threading this number through the various branches of evaluation (e.g. the expressions
on each side of a +) we distribute it over the branches. Thus, one branch burning all the fuel does
not prevent evaluation of another. This still guarantees termination, but has the nice property that
subexpressions without normal forms are “pointed out” in the larger normal form.

We demonstrate this with the following example:

evilFactorial 6
where
id = λx

.
= x

evilFactorial = λn
.
= if n ≤ 1
then n
else if n == 3

then evilFactorial n ∗ n
else evilFactorial (n− 1) ∗ id n

In this program, there is a special case in the factorial definition where n does not decrease.
This is meant to simulate an unintentionally created expression without weak head normal form.

Nevertheless, the main expression evaluates to 〈OutOfFuel〉 〈OutOfFuel〉 ∗ 3 ∗ 3 ∗ 3 ∗ 4 ∗ 5 ∗ 6.

Here, we use a construction site to annotate the failed β-reduction of an application term. The
subexpressions in this term are replaced by placeholders because their normalization would require
more fuel. Remarkably, this result leads the programmer to the case that contains the expression
without a normal form: when n = 3.

Generally, the partial results produced in the event fuel runs out show a “computation tree”,
where the redex at which the fuel ran out prevents the reduction of all its parent redexes, but not
its siblings (in the example above, id n is still reduced). These partial results expose patterns in
the computation tree that can lead the programmers to the source of the issue.

The standard and fuel-limited mode of evaluation are both applied automatically by the pro-
gramming environment. If the standard mode has not yielded any results within half a second,
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fuel-limited evaluation is started in parallel. If the standard mode yields results later, these replace
the results obtained by fuel-limited evaluation.

In most cases, the evaluation running in standard mode will consume more and more memory
as it goes on. To prevent this from becoming a problem, we also limit the memory usage. This
limit is configurable through GHC’s runtime system options2.

In summary, these features keep the programming environment responsive and can even provide
information that is essential to solving non-termination issues, instead of leaving the programmer
to guess and wonder where they went wrong.

Exploring computations The fuel-limited evaluation mode from the previous section also pro-
vides a crude mechanism for exploring computations because it allows us to “step through” the com-
putation by varying the fuel limit. Our approach of distributing the fuel over evaluation branches
is less suited for this use case than threading the fuel through evaluation branches would be, but
we think the use case is worth showing nevertheless.

By default, the partial results the fuel-limited evaluation mode produces are replaced by those
from normal evaluation (when available). Panel 1 from the interface includes a checkbox to disable
this and use fuel-limited evaluation by default.

Additionally, it would be more helpful to see the values of subexpresssions instead of placehold-
ers. Since evaluation is intentionally halted early in this use case, we can reset the fuel limit for the
evaluation of subexpressions when fuel runs out. Intuitively, redexes where the fuel runs out are
skipped.

Consider again the correctly defined factorial function:

factorial 6
where
factorial = λn

.
= if n ≤ 1
then n
else n ∗ factorial (n− 1)

If we make fuel-limited the default, we get the following results for fuel limits 12, 11 and 10:

6 ∗ (5 ∗ (4 ∗ (3 ∗ factorial 2 )))

Figure 4.2: Factorial with fuel limit 12.

6 ∗ (5 ∗ (4 ∗ ( if 3 <= 1

then 3

else 3 ∗ 2 )))

Figure 4.3: Factorial with fuel limit 11.

2https://downloads.haskell.org/∼ghc/8.10.7/docs/html/users guide/runtime control.html#rts-flag--M%20%
E2%9F%A8size%E2%9F%A9
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6 ∗ (5 ∗ (4 ∗ if 4− 1 <= 1

then 4− 1

else 4− 1 ∗ (if ...

then ...

else ...)))

Figure 4.4: Factorial with fuel limit 10.

Figure 4.2 clearly shows how the factorial of 6 is computed. In cases such as this, where fuel
has run out at an application term, the subexpressions in function position are not expanded, even
though the fuel limit is reset. This produces more digestible results in this use case of fuel-limited
evaluation.

Because fuel is distributed over evaluation branches, we see two construction sites in figure 4.3.
The first one prevents the reduction of the if-term. In the second, the reduction of the multiplication
term is skipped, but factorial (3− 1) is still evaluated to 2 because the fuel is reset after skipping
a redex.

Skipped redexes prevent parent redexes from being reduced in the same way that an
〈OutOfFuel〉 placeholder does. This exposes the computation tree, but it can also “blow up” results
when they are substituted in a subexpression of another skipped redex, which is demonstrated
in figure 4.4. In this case, fuel ran out immediately after the reduction of factorial (4 − 1).
Consequently, 4− 1 was not reduced and substituted into the body of the factorial function. Fuel
also runs out at the reduction of the if-term in the body of the factorial function. The construction
site that is used to annotate this spans multiple lines, which is depicted by open sides at the line
breaks.

The skipped reduction of 4 − 1 also prevents the reduction of the condition in the if-term, the
argument of the recursive application of factorial and thus also the reduction of the if-term in its
body (the subexpression of which are elided by the limited rendering depth).

In addition to threading the fuel through evaluation branches instead of distributing it over
them, this problem may also be solved by resuming the reduction of skipped redexes when they
are found in subexpressions of other skipped redexes. Unfortunately, we did not have time to
experiment with this solution.
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Chapter 5

Error-tolerant structure editors

In this chapter, we will show precisely how construction sites can be used in a structure editor
to preserve information from the AST that is essential to isolating errors. This flexibility of con-
struction sites allows for the implementation of an editor that retains the interface of standard
text editors (and thus alleviates the inflexibility issues of strict structure editors discussed in sec-
tion 2.2), while the preserved information supports analysis by IDE services (presented in chapter
6. Furthermore, it provides a more complete structured representation of the program than any
error-correcting parser could (at least in interactive settings).

In this chapter, we first review the architecture of an IDE with a standard text editor to
establish a base to work from. Subsequently, we give an overview of Frugel’s architecture and detail
its components and their implementation.

5.1 Architecture of a standard IDE

The architecture of an IDE with a standard text editor is illustrated in figure 5.1.
The architecture has two components: an editor and a language engine. The term language

engine is chosen to mean anything that provides language specific operations on a program. It
could be a plugin for the editor, a standalone program like a compiler, a server implementing
the Language Server Protocol1 or it could be an internal component of the editor if the editor is
specifically built for the language.

At startup, the editor typically loads a file from the file system into a text buffer. The arrow in
figure 5.1 corresponding with this operator is thin because it does not transform the data signifi-
cantly. It is also dashed because the operation only happens once for the entire editing session (or
until the file is modified by another program and the programmer wants to load the new version) or
not at all if the programmer creates a new file through the editor. The contents of the text buffer
are then updated based on the current contents and keystroke input. The arrow denoting the reuse
of the text buffer contents is wider because it represents a significant transformation.

The programmer may receive feedback about the program by providing it as input to the
language engine. Usually, the text is then parsed into an AST which can be analysed. Finally,
the resulting analysis is rendered into a human friendly form. In practice, the feedback from the

1https://microsoft.github.io/language-server-protocol/
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Figure 5.1: The architecture of a standard IDE.

language engine is presented to the user by the editor and the editor may also do some rendering
work, but this is omitted from the diagram because it is irrelevant for the comparison with Frugel’s
architecture.

5.2 Frugel’s architecture

Figure 5.2 gives an overview of Frugel’s architecture. We discuss its components below and give
some examples to illustrate the various transformations at the end.

Shared component The standard IDE’s architecture (figure 5.1) has changed in a few ways.
First, a new shared component is added which overlaps both the editor component and the lan-
guage engine. The editor requires operations on the document (such as decomposition) that are
encapsulated in the interface this shared component represents. However, in contrast to most struc-
ture editors, the bulk of the work of most operations is defined generically and the language-specific
parts are relatively simple. To signify this, the labels of these operations labels are placed within
the shared component.

The shared component is encoded by the Editable type class:

import Data.Data

class ( Data n, Decomposable n, CstrSiteNode n, Parseable n) => Editable n

This class splits the interaction into multiple more specific type classes. Except for Data,
these will be discussed in detail throughout the rest of this section. Data can be derived by GHC

25



Language engine

Program analysis

and evaluation

results

Editor

Shared component

Decomposition

and character

insertion/deletion

Parsing

Analysis and

evaluation

Rendering

Partial

Linearisation

modified

AST

AST

Construction

site(s)

keystroke

input

display

text

file

Figure 5.2: Frugel’s architecture.

automatically using the DeriveDataTypeable language extension.

The edit loop Next, the biggest difference is the composition of the edit-loop. In the standard
IDE diagram, the loop only consists of text and a transition inserting/removing characters from it.
In a structure editor, edit actions are performed directly on the AST. Frugel’s edit loop consists
of three steps: decomposition (with character insertion/deletion), linearization and parsing. These
operations will be explained in more detail in section 5.3, 5.4 and 5.5, respectively. In short: The
decomposition step finds and appropriate AST node for the edit action and decomposes that node
into a construction site. The “plain-text”/textual edit action triggered by the keystroke is then
performed on this construction site (e.g. a character is inserted or deleted). The decomposition is
an in-place transformation, so the result of this step is a modified AST where at most one more
node than before is decomposed and as much information as possible is preserved.

Finding an appropriate AST node to decompose also requires information on the location of
the cursor. This will be represented with a caret in the examples below. How this information is
actually represented in the system’s implementation is described in section 5.7.1.

Generally, the system tries to decompose the lowest AST node that (1) the cursor is in and (2)
allows for the edit action that needs to be performed. In the case of the language from chapter
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3, this means that insertion happens in leaves in most cases and deletion happens at the node to
which the deleted character belongs (e.g. + in 1 + 2).

While all construction sites in the AST that is rendered will always contain syntax errors, this
is not necessarily true for the modified AST or the construction sites resulting from linearization.

The linearization step flattens most of the modified AST into various “root construction sites”
based on the location of construction sites in the modified AST. These root construction sites vary
in which syntax errors are still isolated in nested construction sites and which are not. This is
necessary, to allow isolated characters from different construction sites from the modified AST to
match grammar rules together (e.g. matching parentheses) without giving up syntax error isolation
altogether.

Finally, the parser tries to parse these root construction sites in order of least remaining isolated
syntax errors, thus resolving all construction sites that do no longer contain parse errors and
producing a new AST.

The AST In contrast to many structure editors, programmers are allowed to manage whitespace
themselves, just like in a text editor. This means they can freely separate code with spaces, tabs
or newlines and apply a formatter whenever they wish (possibly automatically after every edit, if
replicating the behaviour of most structure editors is desired).

To accomplish this, whitespace needs to be included in the AST and preserved throughout the
edit loop. Section 5.7.1 describes how this is accomplished in detail.

Semantic edit actions In addition to textual edit actions, the system could also support seman-
tic edit actions. These are edit actions that take the semantic information or structure from the
AST into account, like refactoring actions or structure-based navigation as it if often found in strict
structure editors. This is possible because our editor maintains an AST just like strict structure
editors. The flexibility of construction sites simply allows our editor to support both. However, no
semantic edit actions have been implemented yet.

Rendering ASTs In Frugel, the default display representation is enhanced with markings to
indicate the presence of construction sites. These markings show exactly what characters and
nodes cause a syntax error and constitute a transparent form of error resilience.

However, some extra work needs to happen to allow these markings to span multiple lines.
During rendering, the markings are split at line breaks, which allows them to flow over line them.
This can cause many markings to be stacked on top of each other when nested construction sites
span multiple lines, which unfortunately has a confusing effect. We had to leave improving upon
this method to future work because it is not the focus of this thesis.

Loading a text file Finally, the operations of loading a text file should be clarified. A text
file is simply converted to a construction site containing the characters in the file2. Parsing this
construction site may fail, in which case the advanced level of feedback the editor can normally
provide drops away. This situation is called a cold start. Since reloading the file with syntax errors
is usually not performed very frequently, this is not seen as a great drawback. Still, Frugel’s archi-
tecture does not put any constraints on the parsing technology used, so error recovery techniques
may still be implemented to alleviate this issue if desired.

2Trivial, but not implemented yet
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Examples Before each step of the edit loop is described in detail, we give a few simple examples
to allow the reader to build an intuition for the system. It is not necessary to understand why
everything happens the way it does at this moment. The goal is only to show the system’s behaviour.

Consider the expression 1 +2. The programmer could insert a “3” using the keyboard, resulting
in 13 + 2. Some construction sites are used internally while traversing the edit loop, but these
can be removed before the edit loop is completed because the resulting document is syntactically
correct.

Pressing the “Delete” key in the previous result will remove the “+” and result in 132. Again,
no construction sites appear, because the result is syntactically correct. So far, the system appears
to work exactly like a text editor. In contrast to some structure editors, merging the 1 and 2 nodes
into one does not require any specific machinery in Frugel.

Furthermore, the programmer can enter the expression 1+2 linearly (as they are used to in text
editors), i.e. by entering “1”, “+” and then “2”. This contrasts with some other structure editors
where expression need to be entered “outside-in”, i.e. entering “+”, “1”, moving to the right and
finally entering “2”.

Suppose now that the programmer introduces a syntax error, e.g. by entering “(” in 1 + 2.

This would result in (1 + 2. The syntax error is contained in the left child of the plus node and

most of the AST is preserved. When the programmer enters a matching parenthesis behind the
“2”, internally the “2” and new parenthesis are placed in a construction site in a similar way, but
because the document is syntactically correct as a whole, both construction sites are removed. The
programmer only sees (1 + 2) as the result.

Insertion happens in leaves of the AST in most cases, so any construction sites that are inserted
will be small. With deletion, it is more often necessary to decompose a non-leaf node, leaving the
children of the node as complete nodes in the AST. Consider the expression f(λx = x+ ) g y. The
syntax error is isolated to a leaf node while most of the structure remains intact. If we were to
press the “Backspace” key, the closing parenthesis before the caret is deleted. The node enclosed
in the parentheses is still syntactically correct and it would be wasteful to discard the information
contained in its structure. To preserve this information, the enclosed node is placed in the resulting

construction site as a complete node, like so: f ( λx = x+ g y.

The first advantage of the system is that it rules out a significant part of the document as a
possible source of the syntax error, which is especially helpful to novices. Furthermore, the way the
system handles syntax errors is transparent, in contrast to the heuristics used by error-correcting
parsers. However, most importantly: analysis can be performed on every edit state without the
risk of producing spurious errors (no guessing of the programmer’s intent is required). Instead, the
analysis simply loses some information.

In some cases, showing outdated information may be preferable, but at least this system allows
for a preference. In any case, the drawbacks of showing outdated information weigh increasingly
heavier with further code changes because any cached information becomes increasingly outdated.
For example, if the programmer would press “Backspace” again, this would remove the “+” and
resolve the syntax error contained by the inner construction site and lead to an improved analysis

again. The resulting expression would be f ( λx = x g y.

In summary, these examples demonstrate how the system preserves the interface of a text ed-
itor while employing a transparent and spurious-error-free form of error tolerance and supporting
analysis of the document on every edit state.
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5.3 Decomposition

Decomposition is arguably the most interesting step in Frugel’s edit loop. During this operation,
a character is inserted or removed from the program while as much of the AST as possible is
preserved.

Some edits can be performed in any construction site, but others can fail. For example, insertion
is always possible, but a character cannot be deleted from an empty construction site.

Before describing the operation in detail, both cases will be illustrated with an example: If the

programmer insert a “3” in 1 + 2, this always succeeds in the leaf node 1 . 1 become 13 and

the operation results in 13 + 2. In this case, only a leaf node of the AST is decomposed into a

construction site, which is the minimum for any system that allows insertion of arbitrary text.

However, trying to delete the next character from 1 would fail, so its parent 1+2 is considered.

Deleting the next character in 1 + 2 succeeds and results in 1 2 . In this case, a non-leaf node

is decomposed into a construction site, but all child nodes are left in their structured form. In this
example, the complete nodes do not provide much additional information, but the child nodes may
be much more extensive in realistic cases. Preserving their structure is what gives Frugel its name
and what distinguishes it from other non-strict structure editors that just allow arbitrary text (but
no child nodes) to replace a node in the AST.

Again, only the node which the edit action truly acted upon is affected, which also makes it the
smallest change possible when allowing the program to be edited as its textual representation.

In both the examples given above, the construction sites will be resolved by the parser and never
presented to the programmer because they are both syntactically correct.

Decomposition implementation The operation is split in a generic part, which is based on the
structure of construction sites and a AST specific part.

The generic part requires two functions from the language-specific part: one to traverse the
components (characters and child nodes) of a node with applicative effects
( traverseComponents ) and one to create a node of the desired type from a construction site given
the node before decomposition ( setCstrSite ).

This first function resembles a monomorphic version (the argument function preserve the type of
their input) of Haskell’s bitraverse from the Bitraversable class. The second function should
correspond to a constructor of the node data type.

Recursive application of traverseComponents allows the generic part of the implementation
to project out a concrete syntax tree from the AST. This allows us to find the node under the
cursor based on the current cursor offset (its index in the textual representation). The node under
the cursor is converted to a construction site and the textual edit action (e.g. character insertion)
is performed. Then it can use the second function to obtain a construction site node which can be
left in the AST.

Before we make this process precise, we discuss the language-specific implementation of these
functions.

Language-specific part of implementation These functions are encapsulated with two type
classes: CstrSiteNode and Decomposable :

class Decomposable n where
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traverseComponents :: Applicative f

=> (Char -> m Char)
-> (n -> f n)

-> n

-> f n

class CstrSiteNode n where
setCstrSite :: CstrSite n -> n -> n

To recapitulate, the purpose of traverseComponents f g n is to allow for effectfully travers-
ing the components of an AST node n. It should apply f to any characters belonging to the node
(e.g. “+”) and apply g to its child nodes in the order they occur in the corresponding production
rule from the language’s grammar. For 〈x〉 + 〈y〉, that order would be g <x>, f "+" and g <y>.
This class becomes more complicated when an AST has multiple node types, as in the example
from 3.3. This is discussed in further detail in appendix A.

Similarly to bitraverse, a definition of traverseComponents should satisfy the following
laws:

1. it should preserve identity: traverseComponents Identity Identity ≡ Identity.
This ensures the AST nodes are not changed by other means than the argument functions.

2. it should preserve composition of its second argument function, but (in contrast to
bitraverse) not necessarily the first:

Compose . fmap (traverseComponents gChar gNode)

. traverseComponents fChar fNode

≡
traverseComponents (\c -> Compose $ fmap gChar (c <$ fChar c))

(Compose . fmap gNode . fNode)

This ensures that the nodes produced by fNode are actually preserved in the result of
traverseComponents. This requirement is relaxed for the first argument because char-
acters belonging to the notation of a term (e.g. the +-sign for an addition term) should be
traversed, but cannot be changed without changing the term to a construction site (which is
up to the generic part of decomposition)) Additionally, this ensures nodes and characters are
not traversed twice.

3. Naturality:

traverseComponents (t . fChar) (t . fNode)

≡ t . traverseComponents fChar fNode

where t :: (Applicative f, Applicative g) => f a -> g a is a applicative trans-
formation, i.e. one that preserves the applicative operations:

t (pure x) ≡ pure x

t (f <*> x) ≡ t f <*> t x

30



This ensures traverseComponents is independent of the applicative functor used.

4. Grammar consistency it should traverse components in order of the corresponding produc-
tion rule from the language’s grammar. Suppose we have decompose :: Decomposable

n => n -> CstrSite n that accumulates components traversed by traverseComponents

in a construction site and parse :: CstrSite n -> Either String n that parses a con-
struction site according to the language’s grammar, instances of Decomposable should satisfy
the equation:

parse . decompose ≡ id

The function setCstrSite should create a node of the desired type from a construction site.
This corresponds directly to a constructor of the datatype representing the AST in most cases, but
it is also given the node from before decomposition for cases where there is no single way to create
the node from a construction site. This is the case for the Node type in appendix A.

An instance of these classes for expression language from section 3.2 could be defined as in the
listing below (omitting whitespace and parentheses for clarity). For an example for the language
from 3.3 with multiple node types, see appendix A.

newtype CstrSite n = CstrSite [Either Char n]

data Expr =

= Variable String
| Abstraction String Expr

| Application Expr Expr

| Sum Expr Expr

| Integer Int
| ExprCstrSite (CstrSite Expr)

instance Decomposable (CstrSite n) where
traverseComponents traverseChar traverseNode (CstrSite cstrMaterials)

= CstrSite <$> bitraverse traverseChar traverseNode cstrMaterials

instance Decomposable Expr where
traverseComponents traverseChar _ (Identifier name)

= Identifier <$> map traverseChar name

traverseComponents traverseChar traverseNode (Abstraction name body)

= Abstraction <$> map traverseChar name <*> traverseNode body

traverseComponents traverseChar traverseNode

(Application function whitespace argument)

= Application <$ traverseChar '\\' <*> traverseNode function

<* traverseChar '=' <*> traverseNode argument

traverseComponents traverseChar traverseNode (Sum left right)

= Sum <$> traverseNode left <* traverseChar '+'
<*> traverseNode right

traverseComponents traverseChar traverseNode (Integer i)

= Integer i <$ traverse traverseChar (show i)
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traverseComponents traverseChar traverseNode (ExprCstrSite cstrSite)

= ExprCstrSite <$> traverseComponents traverseChar traverseNode

cstrSite

instance CstrSiteNode Expr where
setCstrSite = const . ExprCstrSite

The instance declarations are quite repetitive and may be automatically derived from an encoded
grammar, but this is left to future work.

Generic part of implementation Provided with these Decomposable and CstrSiteNode

instances, the generic part of the operation can do most of the heavy lifting. In addition to the
AST, this operation also requires information on the position of the cursor. There are multiple
approaches for tracking the cursor in a document and these are discussed in more detail in section
5.7.1. In short, the approach taken by Frugel is maintaining an integer representing the cursor’s
offset in the text representation of the current document. For example, x + y corresponds with a
cursor offset of 1.

Pseudocode for the generic part and an explanation follows below:

modifyNodeAt ::

(MonadError InternalError m, Decomposable n, CstrSiteNode n)

=> (Int -> CstrSite n -> m (CstrSite n))

-> Int -> n -> m n

modifyNodeAt f cursorOffset program

= runStateT (traverseNode program) $ initialDecompositionState

cursorOffset

where
traverseChar = ... −− Updates to internal state
traverseNode n = ifM passedCursor (pure n) $ do

incrementCstrSiteOffset

withLocalCstrSiteOffset $ do
newNode <- traverseComponents traverseChar traverseNode n

ifM (cursorAtCurrentNode && editNotYetPerformed)

(catchError

(setCstrSite <$> transform n ?? n <* editPerformed)

(const (pure n))

(pure newNode)

transform n = do
cstrSiteOffset <- gets stateCstrSiteOffset

lift . f cstrSiteOffset $ decompose n

decompose :: Decomposable n => n -> CstrSite n

decompose n = ...

The function modifyNodeAt uses an internal state to count how many characters have been
processed, the number of components of the current node (traversed by traverseComponents )
that have been processed and whether the edit has succeeded or not. The number of compo-
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nents processed is also called the construction site offset ( cstrSiteOffset ) because this number
corresponds with an offset within the current node’s construction site if it would be decomposed.

Counting the number of characters processed allows for finding the AST node the cursor is
currently at (further explained below). This could be optimized by caching the length of nodes.

The error monad is used to handle failure of the edit action (represented by f) gracefully (e.g.
trying to delete characters when the cursor is at the end of the document). In this case, the edit
action is discarded.

To kick off the process, traverseNode is applied to the root of the AST. This function is
applied recursively to traverse the AST. Thus, changes to nodes occur in-place. This function
traverseNode first checks that we have not passed the cursor yet using the internal state. In that
case, we can just use the original node as a result. Else, the components of the current node are
traversed and processed. This processing maintains a local value of the construction site offset,
i.e. it is reset to zero before starting and restored to its original value when all components are
processed. Due to this local processing, we can conveniently increment the outer value of the
construction site offset in advance. Processing the current node and its components consists of
applying traverseComponents to the current node to attempt to perform the edit action on its
children and possibly applying the edit action to the current node. Processing the current node’s
children first like this gives rise to a “bottom-up” manner of processing, where decomposition occurs
as low in the tree as possible.

Before continuing, some terminology should be introduced. We say the cursor is at a node when
the cursor offset corresponds to any location within the first character and last character (inclusive)
belonging to a node. For example, for 1 + 2, this means the cursor is considered to be at both the
nodes 1 and 1 + 2.

If the cursor is at the current node and performing the edit on the children failed, an attempt
is made to perform the edit at the current node n. Otherwise, the updated node is returned.
Performing the edit is encapsulated in the function transform described below.

If editing the current node is successful, the state is updated accordingly and the new node is
returned, but, if this fails, the original node is returned.

The function transform first retrieves the offset of the cursor within the construction site that
would result from decomposing the node. Then, the node is decomposed, the edit is attempted
and the resulting construction site is converted back into a node using cstrSiteOffset . Thus, a
successfully edited node is always in construction site form. This is how construction sites reflecting
the edits are inserted into the AST.

The function decompose simply decomposes a node using traverseComponents . For example,

decomposing the term 1 + 2 would result in 1 + 2 .
With a little modification, modifyAt could also be used to implement the semantic edit actions

described before.
In summary, this operation always decomposes a node into a construction site if the edit action

can be applied. However, the number of construction sites in the tree may stay the same because
decomposing a construction site results in the same construction site.

Conservative decomposition With the algorithm described above, entering a “(” in λx = x

would decompose the expression into (λx = x . This is suboptimal because a node is decomposed
while nothing has changed inside the node. To improve this, we change the above algorithm slightly
by adding conservative decomposition.
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The idea behind this kind of decomposition is to include a node as a complete node in the result
construction site when the modification is performed on the edge of a node (i.e. at the start or

end). This would have the decomposition example above result in ( λx = x . Note that this has
nothing to do with the inserted character being a parenthesis. The same would happen for any
character. Decomposition still happens as low in the AST as possible (in/close to the leaves).

Notably, conservative decomposition can be implemented completely generically for the language
from section 3.2 and with minimal additional work from the language engine for the language from
section 3.3 with multiple types of AST nodes. This work effectively consists only of annotating the
types of AST nodes that cannot occur in construction sites (e.g. the root node).

Such a generic implementation consists of a new definition for transform (in the definition of
modifyNodeAt ) and the function conservativelyDecompose :

modifyNodeAt f cursorOffset program = ...

where
...

transform n = do
cstrSiteOffset <- gets stateCstrSiteOffset

lift $ case conservativelyDecompose cstrSiteOffset n of
Just (cstrSiteOffset', cstrSite) -> catchError

(f cstrSiteOffset' cstrSite)

$ const (f cstrSiteOffset $ decompose n)

_ -> f cstrSiteOffset $ decompose n

class Decomposable n where
traverseComponents :: ...

conservativelyDecompose :: Int -> n -> Maybe (Int, CstrSite n)

conservativelyDecompose cstrSiteOffset n = case cstrSiteOffset of
0 -> Just (0, singletonCstrSite)

l | l == length (toList $ decompose n) -> Just (1, singletonCstrSite)

_ -> Nothing
where

singletonCstrSite = fromList [ Right n ]

In the new definition of transform we first check that conservative decomposition is possible
for the node in question and the current construction site offset (case analysis on
conservativelyDecompose cstrSiteOffset n). If so, we do not just get a singleton construc-

tion site with the node, but also a new construction site offset corresponding to either the start or
end of that construction site. Then, we attempt to perform the edit action with that construction
site and offset. IF this fails, we fall back to attempting to perform the edit action with the construc-
tion site resulting from standard decomposition and the old construction site offset. If conservative
decomposition is not possible, we fall back to standard decomposition as well.

The function conservativelyDecompose implements the logic deciding when conservative
decomposition is possible and returns a corresponding construction site and offset. This function
has to be generalized slightly for the case of multiple types of AST nodes. This is expanded upon
in appendix A.

The astute reader may notice that, without restrictions, conservative decomposition would hin-
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der reuse of construction sites, e.g. entering “f” in (1 would result in f (1 instead of f (1 .

Conservative decomposition could be restricted to non-construction site nodes, but this issue al-
ready gets resolved by a small operation that improves conservativeness of the system in the face
of ambiguity. This is described in detail in 5.6.

The remainder of the edit loop The performed edit action might not actually introduce a
syntax error. It may even resolve one that was already present. The construction sites that do
not/no longer contain a syntax error should be resolved again before the new AST is presented to
the user or used for analysis. This is the purpose of the next two steps.

5.4 Partial linearization

The term linearization is borrowed from Voelter et al.’s work on grammar cells[25]. It means to
convert something with a non-linear format (e.g. a tree) into a linear one (e.g. a list or a construction
site). It can also be seen as a recursive decomposition of the nodes in a tree. For example, the term
1 + 2 ∗ 3 could be linearized to the characters “1”, “+”, “2”, “∗” and “3”.

A linearization step is required because a parser is usually not capable of constructing a new
AST from an older AST with some unstructured parts (i.e. construction sites). Therefore, the
AST resulting from the previous step needs to be converted to such a linear format before it can
be parsed.

However, if the AST would be converted to a plain sequence of characters, information that
helps contain possible syntax errors would be lost. If the AST is instead partially linearized to a
construction site, this information could be retained by wrapping construction sites in the AST in

complete nodes. For example, (1 + 2 could be linearized to (1 + 2 . Since the cursor position is

not relevant any more from this point on, the caret will be omitted. Linearizing to a construction
site does require changing the token type of the parser to a sum type of characters and nodes, but
fortunately parsing algorithms are usually independent of the token type.

In the above example, a construction site is contained in another construction site. For disam-
biguation, we will call the outer construction site the root construction site and all others nested
construction sites. The root construction site serves as the input for the parser.

Since the nested construction sites could again contain complete nodes with nested construction
sites, there is still a kind of tree structure in the data. In general, the complete AST is linearized,
except for the construction site nodes. Therefore, this operation is named partial linearization.
From this point on, we will simply use linearization to refer to this kind of partial linearization.

Note that before parsing, it is unclear whether any of the construction sites in the AST contain
a syntax error or not. All construction sites in the AST that was last presented to the programmer
contained one at that point (because the edit loop guarantees this), but the addition or removal of
a character from the decomposition step might have resolved one or more of these syntax errors.
For example, if the left parenthesis in (1 + 2) was just inserted, the second construction site does
not contain a syntax error any more.

To achieve the desired final AST (nested construction sites that do contain a syntax error do not
grow in size, but the ones that do not contain one are resolved) the parser would have to attempt
parsing the contents of all construction sites, but if this fails, fall back to a parse state where the
parser “skips over” the contents of a nested construction site.
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However, recovering like this is challenging because as with the example above, the parser has
to look beyond individual construction sites to see whether it contains a syntax error or not. To the
best knowledge of the author, the only existing parsing technology that could this is GLR or GLL
parsing because it is capable of cloning “the head of the parser” and maintaining multiple parser Should I

clarify this
further?

states at once.
It might also be possible to adapt a different existing parsing algorithm to handle nested con-

struction sites this way or develop an entirely new one, but this was not a priority for this thesis
because it is not needed for a proof of concept.

In fact, Frugel implements a much more naive approach where much of the burden of finding
the desired result is offloaded to the linearization step. This approach allows for the use of any
parsing technology, but does multiply the asymptotic computational complexity of the parser with
a factor that grows exponentially with the number of nested construction site.

It also requires a slight change to the grammar, which is described in detail in section 5.5. In
short: for each non-terminal that represents a type of node (e.g. an expression or a definition), a
production rule is added that produces a complete node of that type. This allows the parser to
accept a complete node of the right type when it encounters one in the root construction site and
skip over the contents of any construction site nested in that node.

For the sake of this explanation, we will first limit ourselves to the case of ASTs with only a
single construction site: (1 + 2. Before wrapping a construction site in a complete node, we could
first attempt to parse a root construction site where the contents of the nested construction site
are simply spliced into the root construction site, e.g. (1 + 2 . In this example, the parser would

fail, but if we have the parser skip the contents of nested construction site, parsing of (1 + 2

succeeds (because all characters read originate from complete nodes).
However, when multiple construction sites are present in the AST, we have to consider all

combinations of nested construction sites because some may only provide the correct syntax for a
node together (e.g. two parentheses in different construction sites) and there may still be others
whose syntax errors are not resolved (so they must be excluded). Then we attempt to parse all the
resulting root construction sites in order of most nested construction sites spliced in (described in
more detail in the next section).

Concretely, for the AST (1 + 2) the following root construction sites will be generated (in the

order they will be attempted to be parsed): (1 + 2) , (1 + 2) , (1 + 2) and (1 + 2) . Since

parsing of the first variation will succeed, there is no need to attempt to parse the others. In fact,
they are not even generated because the system is implemented in a lazy programming language.

In the past examples, all nested construction sites consisted only of characters. However, it is
also possible that the nested construction sites contain complete nodes with more deeply nested
construction sites. To be able to resolve these deeply nested construction sites while the syntax
error from the parent construction site is not yet resolved, all complete nodes are linearized in the
same way as the root AST node. Thus, linearization of these nodes may also generate multiple con-
struction sites, but parsing of these only happens for the selected variation of the root construction
site.

While this approach increases the asymptotic computational complexity of the parsing step
considerably, this may not be a critical issue for real-world systems because the number of con-
struction sites seems to remain relatively small during normal usage. Furthermore, this approach
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does lend itself very well to parallelization, which may reduce the impact on real use performance
even further. However, this was not a priority for the prototype.

Alternatively, requirements on the parser can be added to mitigate this inefficiency. A GLR or
GLL parser could be used to efficiently manage the various root construction sites that we should
attempt to parse. An incremental parser could also offer a significant performance improvement
because there is a lot of overlap in the contents of construction site variations.

It is also important to note that the granularity of error-tolerance in this system is at the level
of construction sites, i.e. the parser attempts to parse a construction site completely, or not at all.
If a construction site contains multiple syntax errors, this means that it cannot be resolved until
all of them are fixed. This limitation is discussed in more detail in section 5.6.

Partial linearization implementation In addition to requiring an instance of Decomposable

for the node types, this operation requires another language-specific function: one that checks if
the argument node is a construction site. Since this should be possible for exactly the same nodes
that have a construction site form (instances of CstrSiteNode ), this function is added to the
CstrSiteNode class. This function is usually trivial to implement:

class CstrSiteNode n where
setCstrSite :: CstrSite n -> n -> n

isCstrSite :: n -> Bool

instance CstrSiteNode Expr where
setCstrSite = ... −− given above
isCstrSite ExprCstrSite{} = True
isCstrSite _ = False

The generic part of the operation is defined as follows:

linearise :: (Decomposable p, IsCstrSite n) => p -> CstrSite n

linearise program

= foldr addItem (singleton $ CstrSite []) rootCstrMaterials

where
(CstrSite rootCstrMaterials) = decompose program

addItem item@(Left _) variations = cons item <$> variations

addItem item@(Right node) variations

= ( i f isCstrSite node

then cons item <$> variations

else mempty)

<> (mappend <$> linearise (decompose node) <*> variations)

The operation is kicked off by applying decompose to the root node of the AST. This results in
a construction site that is folded into a list of construction sites (variations where different nested
construction sites are spliced in) using a singleton list with an empty construction site as starting
value and the following folding operation:

1. If a character is encountered, it is added to all variations.

2. If a node is encountered, we check if it is a construction site with isCstrSite . If this is true,
a list of variations with the node prepended as is, is created. This new list of variations is
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concatenated to the list of variations that results from concatenating elements of a “cross-
product”. The first factor of the cross product is the list of variations obtained by applying
linearise recursively to the node. The second factor is simply the existing list of variations.

A node that is prepended as is, may include new construction sites and should therefore be
reparsed as well. The linearization that this requires is postponed until it is picked by the
parser.

In Frugel’s real implementation, many of the lists in this definition are replaced by sequences
from the containers3 package because these have O(log (min(n1, n2))) concatenation.

5.5 Parsing

While Frugel does not impose any requirements (with the naive approach described in the previous
section) on the type of parser used (LL, LR, with or without lookahead, based on parser combinators
or generated by a parser generator), the input type of the parser must be changed to a construction
site.

Doing this is easier with some technologies than others, but parser algorithms are generally
independent of the input type, so this is not regarded as a significant requirement.

Additionally, the parser needs to be run on the various construction site variations from the
previous step. The interface between the parser and the editor is once again encapsulated in a type
class (introduced later in this section).

Finally, the language’s grammar should be adapted to the new input type. First, consider the
following grammar for the simple extended λ-calculus described in section 3:

〈expr〉 ::= ‘\’ 〈ident〉 ‘=’ 〈expr〉
| 〈expr〉 〈expr〉
| 〈expr〉 ‘+’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉
| 〈number〉

〈ident〉 ::= 〈letter〉 〈alphanumeric〉

〈alphanumeric〉 ::= 〈letter〉
| 〈digit〉

〈letter〉 ::= 〈uppercase〉
| 〈lowercase〉

〈uppercase〉 ::= ‘A’
| ‘B’
| ...
| ‘Z’

〈lowercase〉 ::= ‘a’
| ‘b’
| ...
| ‘z’

〈number〉 ::= 〈digit〉*

〈digit〉 ::= ‘0’
| ‘1’
| ...
| ‘9’

To each non-terminal that is represented by a node in the AST a production rule should be
added that produces complete nodes of that type (the other type of “token” in construction sites).
We denote these nodes with terminals in curly braces, e.g. {Expr}. These production rules allow
the parser to accept a complete node of the right type for the corresponding non-terminal.

Additionally, syntax for empty construction sites should be added. The grammar for expressions
now looks as follows:

3https://hackage.haskell.org/package/containers
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〈expr〉 ::= ‘\’ 〈ident〉 ‘=’ 〈expr〉
| 〈expr〉 〈expr〉
| 〈expr〉 ‘+’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉
| 〈number〉
| ‘...’
| ‘{Expr}’

Note that the added production rule is different from the notation for construction sites intro-
duced in section 3. The production rule produces a complete node (which can be a construction
site), but the notation added in section 3.2 refers directly to construction sites, which may contain
complete nodes of any kind. No new construction sites are created during parsing.

Finally, one should pay attention to cases where lookahead is used because the targeted char-
acters may also occur in a complete node.

Parsing implementation As with all language-specific components, there is an interface by
which the interaction with the editor is encapsulated:

class Ord (ParseErrorOf p) => Parseable p where
type ParserOf p :: * -> *

type ParseErrorOf p :: *

programParser :: (ParserOf p) p

runParser :: (ParserOf p) p

-> CstrSite p

-> Either (NonEmpty (ParseErrorOf p)) p

errorOffset :: Lens' (ParseErrorOf p) Int

We use the TypeFamilies language extension to associate two type families with the class:
ParserOf and ParseErrorOf . These type families allow the implementer to choose the parser
type and the datatype to represent parse errors. These types are parametrized by the type variable
p introduced by the type class. This variable should be instantiated with the type of (the root of)
the AST, i.e. Expr in the running example.

Besides a function (runParser ) to run a parser for some node n, instances of the class should
provide a parser for a complete program ( programParser ) and a lens4 for adjusting a parse error’s
location. We also require the datatype representing parse errors to be an instance of the Ord class
for deduplication using sets.

This class is generalized slightly further in appendix A to account for ASTs with multiple
types of nodes. The reader is referred to Frugel’s source code for an implementation using parser
combinators.

As mentioned in the previous section, multiple variations of root construction sites are generated
by partial linearization, representing different combinations of nested construction sites. From these
variations, one that is parsed successfully should be picked and parse errors should be collected.
Due to time constraints, only a simple suboptimal approach was implemented.

First, the root construction site variations are sorted and grouped into “buckets” with the same
number of nested construction sites. These buckets are then considered in order of least remaining

4https://hackage.haskell.org/package/lens
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nested construction sites. If only a single variation in a bucket is accepted by the parser, no other
buckets will be considered. However, if multiple variations are accepted, this indicates an ambiguity
in how construction sites can be resolved. In this case, we act conservatively and simply move on
to the next bucket with more remaining construction sites.

If this process does not produce a new AST, the original root construction site (with all nested
construction sites intact) is used to continue the operation. Using this original construction site or
the new AST produced by a successful parse, the parsing (and partial linearization) process is run
recursively for all remaining nested construction sites, so any more deeply nested construction sites
may be resolved as well.

This top-down order of processing construction sites is unnecessarily inefficient for context-free
grammars. Due to their context-independence, processing construction sites in a bottom-up order
should produce correct results as well. However, almost all real-world languages do have a form of
context-dependence: lookahead. A bottom-up order of processing construction sites would still be
possible by adding as much context to the parser input as required, but this would require some
clever engineering that did not fit in our time constraints.

Parse errors from all attempted parses are collected and deduplicated. Extensive testing to show
whether this is a good approach or not is left to future work.

5.6 Limitations

While Frugel improves on error-correcting parsers and strict structure editors overall, its approach
is still imperfect and in some cases inferior to some error-correcting parsers. Consider the expression

(f (1 + 2. In the system described so far, if the programmer enters a closing parenthesis, the

result will be (f (1 + 2) . The new parenthesis is matched with the parenthesis in the outer
construction site, but it is not clear that this is the intention of the programmer.

This behaviour does not fit Frugel’s philosophy: it cannot know the intention of the programmer,
so it should act conservatively in the face of ambiguity.

While we have not yet found a way to resolve this issue generally, we can force the intended
behaviour in some cases: if we have a construction site that is the only item in another construction
site, the inner construction site’s contents can be spliced into place in the outer construction site.

This would transform (f (1 +2 into (f (1 +2, but not f ( λx = x+ g y into f (λx = x+ g y.

This does discard some information on what parts of the expression contain syntax errors, but no
information from complete nodes is discarded. Still, some ambiguous cases are still not handled
conservatively.

With this operation added after the parsing step, entering a closing parenthesis in (f (1 + 2

would result in (f (1 + 2) because all errors contained in a construction site (or any parent

construction sites) need to be resolved before the construction site can be removed. This might
confuse programmers initially, but fortunately the rule is relatively simple.

This new case, however, also has issues. Suppose that the programming language also allows
for curly braces instead of parentheses. If we have the expression (f {1 + 2, entering a curly brace

will still introduce a new construction site, i.e. result in (f {1 + 2} .

Note that even without the splicing operation described above, this case would be problematic,
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since the outer construction site still has an unmatched parenthesis which prevents the removal of
the inner construction site with the curly brace.

This is indeed a case where Frugel’s approach is inferior to an error-correcting parser. We believe
there are ways that this issue could be resolved, but we have not been able to spend a significant
amount of time on it yet.

5.7 Other implementation decisions

Frugel is implemented in Haskell using the Miso5 framework. When considering an implementation
framework, the following properties were considered:

• Allows for writing in a functional language with a strong type system.

• Level of integration in a development environment, e.g. auto-complete and automated analysis
(type errors and type information).

• Support for step-debugging with breakpoints.

• Allows for an idiomatic way of creating GUIs.

• Portability of interface. Ideally, it would compile to the web, which makes it easy to share
and present.

Three candidates were given extensive consideration: iTasks on Clean[16][17] or Haskell on either
Reflex6 or Miso. After large parts of the implementation were finished, a fourth candidate called
Schpadoinkle7 was discovered. However, rewriting the implementation for his framework was not
deemed worth the potential benefits.

From the original trio, iTasks was dismissed first due to low level of support in development en-
vironments and lack of step-debugging with breakpoints. Miso and Reflex mainly differ in proposed
application architecture: Miso is a faithful implementation of The Elm Architecture (TEA)[4], while
Reflex proposes that the programmer designs their own architecture relying on Functional Reactive
Programming (FRP).

With TEA, user input is handled through updates to a model that constitutes the complete
state of the application. The “view” that is presented to the user can then be derived from this
model by relatively straight-forward functions. This architecture’s strength is in its simplicity, but
it does have the downside that code pertaining to even relatively simple stateful components like a
counter is spread across at least three places.

Functional Reactive Programming was originally formulated in 1997 [5] by Conal Elliott and
Paul Hudak. Since its introduction, it has taken many forms and interpretations.

Without going into too much detail, FRP in the context of Reflex is all about combining func-
tional programming with data that includes a dimension of time. For example, instead of setting
an event handler on a button, a button returns the stream of events it generates. In this case, the
dimension of time is discrete (in the same way that integers are).

5https://github.com/dmjio/miso
6https://reflex-frp.org/
7https://shpadoinkle.org/
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Mouse position on the other hand, has a value for every point in time (at least theoretically)
and its time dimension is therefore continuous. Data with a continuous dimension of time is also
called a “behaviour”.

Event streams and behaviours can also be combined into a “Dynamic”, which has the same
continuous time dimension as a behaviour, but also provides a way to handle changes at discrete
points in time.

FRP allows for more cohesion in UI components by handling user input locally. This greatly
improves their composability because there is no global model or type representing updates that
needs to be updated when a new component is added. Therefore, FRP is especially suited for
GUIs with many isolated components. However, handling this temporal dimension complicates
component definitions. In the case of Reflex specifically, recursive do-blocks are required. This is an
extension to Haskell’s do-notation which allows for recursive bindings (similar to let ). This can be
problematic because it makes it easy for non-terminating recursion to occur. As the documentation
says: “Basically for doing anything useful one has to introduce a feedback {loop} in the event
propagation graph. And often this can lead to either an infinite loop or a deadlock.”[3]

This feedback propagation only occurs once in Miso (though updates of the global application
model) and it is shown to work properly in this instance. Our prototype has relatively few compo-
nents, so the benefits of component cohesion are limited, but so is the drawback of using recursive
do-blocks. Ultimately, Miso was chosen because of its simplicity. Hazel has also demonstrated that
TEA can work well for structural editors8.

5.7.1 Cursor and whitespace

Hazel uses Huet’s zipper[10] for representing an AST with a cursor[15]. This solution does not
work well for Frugel because we would lose the cursor location when parsing a construction site.
Additionally, implementing text selection is more difficult because you need two cursor positions.

Instead, the cursor location is represented by its integer offset in the program’s textual repre-
sentation. This requires a method for finding and modifying an AST node based on such an offset.
One option would be to attach source locations (start and end line and column number) to AST
nodes.

However, to provide an editor interface that feels as simple as that of a standard text editor, the
programmer should be allowed to manage whitespace themselves. This means separating code with
spaces, tabs or newlines as they wish and applying pretty printing whenever they wish. With the
attached source location model, character insertion would amount to “moving over” all the following
AST nodes by changing their source locations and taking these source locations into account when
rendering the code.

This would not only be inefficient, but also needlessly complicated when whitespace is not
discarded by the parser. When whitespace is not discarded, the AST becomes lossless: the complete
source text can be reproduced from just the AST. If the whitespace is saved in the AST, whitespace
inserted in the text can simply be inserted in the corresponding place in the AST. We can also find
AST nodes by their source location based on this “complete view” of the source text.

The problem with this approach is that it “clutters” the AST with text details, while an AST
should just represent a structured view of the program. This same problem occurs when representing
parentheses in the AST. Parentheses are used to denote binding precedence of operators, but are
redundant once the expression is parsed. To solve both problems (and some others regarding other

8https://github.com/hazelgrove/hazel/
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parts of the programming environment) all AST nodes have a metadata field that contains such
“text-only” information.

Saving whitespace in AST node metadata begs the question: which whitespace belongs to
which AST node. When discarding whitespace, grammar terminals usually consume all following
whitespace, but this approach is not ideal for Frugel because it leads to larger construction sites.

For example, you could get λ y . This is not ideal, because we prefer to keep construction sites
as small as possible.

Instead of trailing whitespace, interstitial whitespace is saved. Interstitial whitespace is whites-
pace occurring between the children of an AST node. Concretely, we keep a list of whitespace
fragments (strings containing only whitespace) for each node. For example, the expression

1 +

1

would have [" ", "\n"] as interstitial whitespace list. In the previous example, we would
have a single fragment belonging to the application node, which makes it easy to display it as

λ y .
Manually inserting whitespace non-terminals in the parser definition would be error-prone and

tedious. This can usually be alleviated by including whitespace consumption in the primitives
used in the parser definition. In the case of interstitial whitespace, the primitives that need to be
modified are the basic parser combinators (〈$〉 and 〈*〉 in the case of Haskell parser combinators).
Unfortunately, this does mean most higher level parser combinators must also be adapted to use
these primitives.
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Chapter 6

Error-tolerant IDE services

Based on the ASTs produced by the structure editor from the previous chapter, we can develop
live IDE services. These services can be live because there is always an AST to work from, but to
make them error-tolerant requires additional effort.

In this chapter, we present two error-tolerant IDE services: a formatter (a function that re-
arranges the whitespace in the program in order to make it easier to read) and an interpreter
that provides information about the program’s runtime behaviour. This does not constitute a
full-featured IDE by far, but especially the second service does make us confident that most IDE
services can be adapted to become live and error-tolerant.

When designing services like this, it helps to remember that the goal is not to guess what the
user intends to happen in the event of an error. Instead, the goal is to perform some task correctly
for the correct parts of the document and incorporate in the incorrect parts in the result in a
reasonable way. Thus, the utility of the result depends on how much it depends on the correctness
of the erroneous part of the document.

In contrast to the structure editor detailed in the previous chapter, these services are largely
language-specific by nature. However, there are still some parts that be implemented generically,
especially regarding how the service is integrated into the programming environment. The details
of this will be discussed separately for both IDE services.

6.1 Formatting

Whitespace plays an important role in any document that is intended to be read by humans. When
an AST is available at all times, it is possible to derive the whitespace purely from the structure
of the tree, but we choose not to do this because it can lead to sudden shifts in the layout of the
document during editing.

Still, manually managing whitespace remains boring and repetitive work that should not be left
to the programmer, so instead, Frugel allows the programmer to run the formatter with a key-
combination (like many other programming environments). However, due to their isolation with
construction sites, syntax errors do not affect the formatter’s behaviour outside the AST node with
the error. To the best of our knowledge, this is a unique feature.

We give an example below:
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Figure 6.1: Input program Figure 6.2: Formatted program

The formatter produces the program on the right from the one on the left. Despite the missing
counterpart of the first parenthesis, theArgument is only indented once because it is an argument
to the construction site. It would be indented twice when it is parsed as a second argument to
argument , like an error-tolerant parser might do. Our formatter does not have to guess where
the closing parenthesis is meant to go because there is a structured document to work from. As
expected, the excessive whitespace in argument ok is still removed.

The appropriate whitespace is based on the kind of node. Since we cannot know what kind of
node a construction site is supposed to become, the contained whitespace is never changed.

6.1.1 Formatter implementation

Usually, formatters output plain text. This would discard the construction sites and thus informa-
tion on the origin of syntax errors, so an error-tolerant formatter needs a different approach.

We need to perform a process similar to the partial linearization and reparsing steps detailed
in 5.6 and 5.5, but instead of linearizing to various construction sites (where the inlining of nested
construction sites is varied), the formatter only linearizes to a construction site where no nested
construction sites are inlined. In other words, the degree of linearization performed by the formatter
is the maximum degree that allows all complete nodes to be recovered.

However, if the AST is only partially linearized, we need a layout algorithm (an algorithm that
determines where whitespace should be inserted or removed) that produces a tree as output instead
of plain text. Furthermore, we would like this algorithm to be language-agnostic because it would
be a waste to implement the same approach of ensuring a line does not exceed a certain length the
same way for different languages. Fortunately, such algorithms already exist and are implemented
by the prettyprinter1 package.

We can now describe the concrete steps performed by the formatter:

1. Instead of using node decomposition to linearize nodes, the formatter uses a function that
converts AST nodes to a language-agnostic tree structure specific to the layout algorithms
from the prettyprinter package. While this structure is almost completely linearized by the
layout algorithms, it does allow some structure to be preserved through annotations. These
are what we use to limit linearization.

2. It runs one of the layout algorithms from the prettyprinter package to obtain a formatted and
partially linearized tree from the tree from the previous step. Through this process, complete
nodes are linearized, but no construction sites are inlined.

1https://hackage.haskell.org/package/prettyprinter
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3. The tree from the previous step is still specific to the prettyprinter package, so we need to
convert back to the tree of construction sites that is required by the parser. In this tree, a
construction site was either a construction site in the original AST or it does not contain a
syntax error, so complete nodes can be recovered from it.

4. It reparses the construction sites in the tree, to recover the original AST with adjusted whites-
pace and a new list of syntax errors with updated locations. Because construction sites from
the original AST are separated from those that resulted from the linearization of complete
nodes, all complete nodes can be recovered.

Admittedly, this is more complicated than formatting usually is, but fortunately the implemen-
tation of this approach can be reused for different languages. The only language-specific step in
this process is 1. Using the functions and combinators included in prettyprinter, the definition of
this conversion is little different from what you would need for a traditional formatter.

6.2 Live programming support

As promised in the introduction, we now demonstrate how the internalization of construction sites
into language semantics can enable live programming in the presence of errors. To this end, we
develop a formal calculus that allows for evaluation to “continue around errors” on all levels of
analysis (syntax, binding and types). This is implemented in an interpreter that also gathers
runtime information that is relevant in the context of the current cursor position.

Since there is no I/O in the example language used, there is no need to support pausing the
interpreter when the program is edited. Instead, the interpreter is simply restarted and the effects of
the code changes on the runtime behaviour of interest will become apparent when the in interpreter
re-evaluates those parts of the program.

Because of the multitude of requirements and interactions between them, we develop the calculus
and interpreter in stages. First, we discuss our general approach to evaluation and our motivations.
In the second stage, we take on the requirement of error-tolerance by defining corresponding notions
of weak head and full normal form and an interpretation function. Third, we add the requirement of
serializable and comprehensible normalization results, which requires post-processing of the results
of the interpretation function and variable name disambiguation. This step also completes our
definition of the normalization function. The collection of runtime information is introduced in
the fourth stage. To this end, we extend the interpretation function from the second stage and
introduce a simple dynamic type system, which we elaborate on in a subsequent interlude. In
the fifth stage, we adapt the post-processing step from the third stage to the new interpretation
function from the fourth stage and incorporate non-termination isolation technique. In the sixth
and final stage, we tackle non-termination issues more directly by developing an alternate mode of
evaluation that is limited to a configurable number of reductions. As a bonus, this provides a crude
method for exploring the evaluation process of any expression. Finally, we discuss some noteworthy
engineering challenges related to maintaining responsiveness of the programming environment.

6.2.1 General approach to evaluation

There are many approaches to evaluation in λ-calculus. Aside from supporting the functional
requirements we discuss in the following sections, we also need to consider ease of implementation.
Ideally, the chosen approach would be computationally efficient as well.
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In the end, we developed an approach based on normalization by evaluation for untyped λ-
calculus [6]. In this approach, normal forms of expressions in the object-language (the example
language established in section 3) are obtained through their denotational semantics in a meta-
language (Haskell in our implementation; mathematics in this report). A denotational semantics
formally describes the meaning of expressions in the object language in terms of the meta-language.
Most importantly, functions and function application in the object language are described by func-
tions and function application in the meta language, respectively. Usually, this involves defining a
new representation for object-language expressions in addition to the syntactical one. This addi-
tional semantic representation is called the denotation of an expression.

Formally, we would need to take a domain-theoretic approach with mathematics as our meta-
language. This would amount to accounting for non-termination with ⊥, but we think this is more
harmful than useful in our case because our goal is to explain the details of the system instead of
formally proving properties of it. We refer the reader to Filinski and Rohde’s article [6] for a proper
domain theoretic approach to a denotational semantics for untyped λ-calculus.

Our approach has the following qualities:

1. Most importantly, by combining this approach with Haskell, the object language inherits its
call-by-need semantics, at least with the simple version described in section 6.2.2. When we
add runtime information collection in section 6.2.4, we need to fall back to big-step dynamic
semantics to implement sharing. The laziness of these semantics is important because ex-
pressions without normal form occur much more often in the live setting of our programming
environment. This laziness enables us to provide useful runtime information to the user in
many of those cases nevertheless. The reasons for this are discussed in detail in section 6.2.7.
Because laziness plays such a important role for the usability of the programming environ-
ment, we also annotate it in the formal specification of the approach. As a bonus, these
semantics make the interpreter relatively efficient as well.

2. With a little modification, it supports the preservation of variable names, which makes the
results presented to the user more comprehensible.

3. Instead of variable-capture-avoiding substitution, we only need to perform variable disam-
biguation after normalization. Variable capture happens when a free variable in one expression
becomes bound in an expression it is substituted into. Performing this after the expression is
reduces is both more efficient and simpler.

4. The lack of substitution makes it relatively efficient.

Countering these qualities are three drawbacks:

1. Usually, this approach is only used to obtain full normal forms, but this causes unnecessary
cases of non-termination when the programmer is only interested in part of the result. In
our most significant modification to the approach from Filinski and Rohde’s article [6], we
incorporate deferred computations explicitly in the denotation and add a third representation
for object-language expressions: a partially reified representation. This modification will be
discussed in more detail in section 6.2.3.

2. The fact that this approach requires additional representations is also a drawback on its own
because it requires either duplicating definitions and code or merging the various implemen-
tation into a single complex one. We apply the former in the report and the latter in the
implementation.
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3. Handling the results obtained with this approach requires more care than others because non-
termination can be hidden deep in the structure of the result. Notably, normal forms in the
object-language are translated to normal forms in the meta-language, so if an object-language
expressions does not have a normal form, the corresponding denotation does not have one
either. However, we cannot have the first quality without this drawback.

Whether this is the optimal approach to achieve our goals is difficult to determine because
the interactions between requirements, qualities and drawbacks are often not immediately obvious.
However, even after the implementation, we have not found an approach that an approach that is
obviously better.

Normalization by evaluation consists of two steps: first interpretation and second reification.
The interpretation step converts an expression in the syntactical representation to its denotational
one and the reification step converts it back. The first step will be described in the next section
and the second in section 6.2.3.

6.2.2 Error-tolerant interpretation

Before the interpretation step can be defined, the denotation of expressions from the example
language and a formalized notion of weak head normal form (WHNF) for the example language
are needed. Because the denotation incorporates deferred computations based on the definition of
WHNF, we start with the latter.

We naturally extend the standard notion of β-redexes to general redexes that include reducible
addition terms. The reduction for addition terms simply adds the two numbers from its subexpres-
sions together to produce a new number term.

The addition of numbers and construction adds two new kinds of non-redex application terms.
Furthermore, the addition term can be irreducible when one of its sub-expression is not a number
term. Combined, we get the following definition for WHNFs:

Definition 6.2.1 (Weak head normal form). A term is in weak head normal if it is of one of the
forms:

1. x, a free variable

2. n, a number

3. nc , a construction site

4. λx
.
= e, an abstraction term

5. el + er where either or both e1 and e2 are in WHNF, but not a number.

6. ef earg, an application term where ef is in WHNF, but not an abstraction term

Full normal form is defined as standard, i.e. a term e is in full normal form if and only if there
are no redexes in e (it is irreducible).We start with the denotation of expressions:

The denotation incorporates deferred computations in the places where there are no constraints
on the subexpressions of an expression in WHNF. We write a for a deferred computation of a and
force(a) for forced computation of a deferred value to WHNF. In the definitions below, these are
mere annotations, but they determine the object-language calling semantics if the interpretation
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function is implemented in a strict meta-language. This is discussed in more detail at the end of
this section. The denotation follows:

DExpr de ::= x | n | λmv.me | de de | de+ de | dcm
DCsMt dcm ::= di∗

DCsIt di ::= c | de
(6.1)

Other than the deferred computations of expression in complete nodes and arguments in appli-
cation terms, the main difference with the syntactic representation from section 3 is the abstraction
term. Here, it is represented with a meta-language function (signified by the bold lambda λ) of
the type DExpr → DExpr. In the notation, mv and me range over meta-language variables and
expressions, respectively.

What meta-language function is used in this representation depends on the operations performed
on the expression. For example, given the meta-language function f as representation of an object-
language function, the result of performing an operation g on f is simply the composition of f and
g, i.e. λx.g(fx)f .

Normally, denotations for λ-expressions lack the application (and addition) terms because these
turn into operations in the meta-language. However in our case, they cannot be omitted, because
we need to give meaning to syntactically malformed and ill-typed expressions to be error-tolerant
and such erroneous application and addition terms cannot always be reduced.

For disambiguation of representational addition and meta-language addition, we will use + for
the latter from this point on.

Now, we can define an interpretation function JeK : (V → DExpr) → DExpr that interprets an
expression e in the environment gives as the first argument:

JxK(ρ) = force(ρ(x))

Jλx .
= ebodyK(ρ) = λdearg.JebodyK(ρ[x 7→ dearg])

Jef eargK(ρ) =

{
f(JeargK(ρ)) f = λmv.me

f JeargK(ρ) otherwise
where f = Jef K(ρ)

JnK(ρ) = n

Jeleft + erightK(ρ) =

{
n1 + n2 JeleftK(ρ) = n1 ∧ JerightK(ρ) = n2

JeleftK(ρ) + JerightK(ρ) otherwise

J c00..c
0
i0 e0 .. en c

n+1
0 ..cn+1

in+1
K(ρ) = c00..c

0
i0 Je0K(ρ) .. JenK(ρ) cn+1

0 ..cn+1
in+1

for n ≥ 0

(6.2)
There are a few cases of interest regarding error tolerance: (1) a failed match on the denotation of

the expression in the function position in an application term, (2) a failed match in the denotation of
addition and (3) construction sites. The first can occur when there is any kind of error that prevents
the expression from being interpreted as a meta-language function. In such a case, the argument
is nevertheless interpreted and is used to construct a new syntactic application together with f .
This way, interpretation (and therefore normalization) does not stop in the event of an error (as
with exceptions) nor does the expression at which the error occurred absorb other values (as with
undefined). Instead, the programmer gets a partial result that shows exactly where something
went wrong and most importantly: the context in which something went wrong. With the other
error handling approaches, the programmer would either have to simulate the computation in their
head or start debugging and run and navigate the program again.
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Additionally, the programmer can see whether other values in the context match their expec-
tations and thus verify other parts of the program. This kind of feedback is remarkable when
compared to other methods of verification because (1) the programmer did not have to expend any
effort to receive it (as is sometimes the case with type systems), (2) it is very detailed in comparison
to running the program as a whole and (3) probably more relevant in the current editing context
than a whole-program result.

However, this can generate immense expressions when the error occurs far into normalization.
At the moment, we mitigate this issue by limiting the rendering of expressions to a configurable
depth (see also section 6.2.7), but more advanced methods of managing what part of an expression
should be displayed need to be developed before this approach is useful for real-world programs
(see section 8.4).

The second case works similarly. With a concrete function such as addition, it is easier to
imagine verifying the unaffected part of the result (the sub-expression that could be interpreted as
a number). For example, x+ 〈some complicated expression〉 can be normalized to x+ 37.

In the case of construction sites, all characters are preserved and all complete nodes are inter-
preted. This interpretation is deferred to prevent unnecessary cases of non-termination.

Deferring and forcing interpretation We will now give some more detail on the distinction
between deferred and forced interpretation of values. Depending on meta-language semantics, using
the result of an application of the interpretation function JeK(ρ), will either compute the result of
this interpretation immediately (with strict meta-language semantics) or only when the result is
needed for output to the outside world (with lazy meta-language semantics), e.g. displayed on the
screen.

However, one may still implement lazy object-language semantics in a strict meta-language by
replacing all deferred values with functions that take no arguments and produce the deferred values,
e.g. () => interpret(e, env) in JavaScript. In turn, the force function calls this function and
thus the embedded interpretation function.

This way, object-language function arguments are still only evaluated to WHNF when they are
required to compute the result of the program. In a lazy meta-language, all function calls are
deferred implicitly, which makes these annotations superfluous.

6.2.3 Presenting normalized expressions

An essential part of live programming environments is the presentation of runtime information.
However, expressions in the semantic representation from the previous section cannot be directly
presented to the user, because it contains meta-language functions. The simplest solution would
be to show a placeholder in the place of function terms. This is a fair option when the information
that could be shown has become unrecognizable due to internal transformation (for example, in a
compiled language). In our case, the only transformation that has taken place is the evaluation of
the function body. This is something the user has a mental model of and can therefore recognize
and use to reason about the program. Then, the main challenge is preserving the variable names
from the syntax representation.

For this, we need to extend the denotation of function terms to a tuple containing the original
name of the variable it binds (the x in λx

.
= e) and the meta-language function that was already
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there:

DExpr de ::= . . . | (x,λmv.me) | . . . (6.3)

In the interpretation function, these variable names are simply copied from the syntax repre-
sentation in the lambda term case and they are discarded when a function is eliminated in the
application term case.

When we preserve variable names, we also preserve the variable-capture problem. However
because the interpretation function is independent of them, it is sufficient to disambiguate names
referring to different variables in the result of the interpretation function (instead of performing
capture-avoiding substitution during interpretation). We incorporate this disambiguation in the
function that converts expressions in the semantic representation back to the syntax representation.

This process is called reification because meta-language expressions that represent expressions
from the object-language are reified back to a syntactical representation. With denotational seman-
tics, reification is usually defined together with an inverse process called reflection in a mutually
recursive manner. However, reflection is superfluous in our system because the only case we need
is the one for variables and our representation of variables is the same in both expression represen-
tations.

The reification function ↓ de : Expr is defined as follows:

↓ x = x
↓ (x, f) = λy

.
= ↓ f(y) where y = fresh(x)

↓ (def dearg) = ↓ def ↓ force(dearg)
↓ n = n

↓ (eleft + eright) =↓ eleft+ ↓ eright
↓ c00..c

0
i0 e0 .. en c

n+1
0 ..cn+1

in+1
= c00..c

0
i0 ↓ force(e0) .. ↓ force(en) cn+1

0 ..cn+1
in+1

for n ≥ 0

(6.4)

This function uses fresh to obtain a fresh variable name based on a given variable name for
the disambiguation mentioned before. We omit a formal definition of this function because nor-
malization is independent of its exact workings. The approach we took requires the distribution
of a variable name environment through the reification function and appends numbers to variable
names based on this environment. This environment is initialized with the set of free variables from
the original program (before normalization) to prevent name collisions with them as well.

This function also completes the full definition of normalization: norm(e) =↓ JeK(empty)) where
empty maps all variable names to variables with the given name (so free variables are mapped to
themselves).

6.2.4 Collecting runtime information

In this section, we add the collection of runtime information to the interpretation function from
section 6.2.2. This runtime information is added to the result of the function, but the normalized
expressions it returns stay the same. The interpreter collects two kinds of runtime information:
encountered errors and values relevant at the cursor. We extend the interpretation function to
include these in the return value: JeK(ρ) : (V → DExpr) → (DExpr,RInf). We use the following
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notation for runtime information:

RInf ri ::= err | rci | ri ∪ ri | ε
EvEr err ::= τ : de | x9
Type τ ::= τ→ | τnum
RecI rci ::= ρ ` de

(6.5)

Runtime information RInf is either an error or a recorded interpretation, a composition of other
runtime information or an empty runtime information collection. An interpretation error err can
be a type error τ : de or a free variable error x 9. The first of these is used when an expression
de is encountered of which the form does not match the expected type τ . For example, if the
interpretation of ef in the interpretation of ef earg results in an expression of the form e1 + e2, it
is trivial to see that this does not match the type for functions, τ→. In this case, the type error
τ→ : e1 + e2 will be produced. This kind of dynamic type analysis is formalized in section 6.2.5.

Currently, the set of values relevant at the cursor is chosen to be the value of the smallest expres-
sion the cursor is on (de) (determined with the same process as what node should be decomposed
by an edit) and all variables that are in scope at the cursor (ρ). We call a tuple of these values a
recorded interpretation, denoted ρ ` de.

The interpreter records the interpretation of an expression every time it encounters the ex-
pression with the cursor on it. For instance, if the cursor is in the body of the identity func-
tion i = λx

.
= x, interpreting the expression i i a will produce the recorded interpretations

x 7→ λx
.
= x ` λx .

= x and x 7→ a ` a.
Sadly, runtime information collection has complicating interactions with other properties of our

interpreter:

1. The expressions in semantic representation in the type errors and recorded interpretations
need to be shown to the user as well. Therefore, they also need to be reified and have
variables renamed for disambiguation. This is no problem for environment-less disambiguation
as described before, but if disambiguation does depend on an environment, this environment
needs to be available when the error is produced or the interpretation is recorded. This
complication will be discussed in further detail in section 6.2.7.

2. Normalizing the expressions in type errors and recorded interpretations could evaluate parts
that would not be evaluated otherwise. This extra evaluation may take a noticeably long time
or never even terminate at all. However, the user is often only interested in specific parts of
these values, so it is sufficient to perform this extra evaluation on-demand. The details of this
will be discussed in section 6.2.7 as well.

3. If we keep directly translating sharing in the object-language to sharing in the host-language,
runtime information will be duplicated when a value is shared, e.g. in λx

.
= x + x. Because

the evaluation of x (and therefore of the corresponding runtime information) is deferred, the
runtime information is produced at both occurrences of x in the body of the function and
then combined by the addition term. Hence, this issue is due to the lazy semantics of our
object-language (the runtime information would be produced only once with strict semantics,
specifically at the point when the function is applied to an argument). This duplication would
fit a call-by-name semantics, but we think this is unintuitive. For instance, if we calculated
the factorial of 3 with the church-encoding for numerals and placed the cursor in the body,
we would get 27 recorded evaluations instead of 4. To resolve this, we redefine sharing in
big-step-operational-semantics-style using references in section 6.2.6.
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6.2.5 Interlude: dynamic type checking

Technically, the untyped lambda calculus is a uni-typed calculus. A free variable may block reduc-
tion, but this is not a type error. Our object-language extends the untyped lambda calculus with
numbers, which makes it bi-typed and therefore there can be type errors.

We define a rudimentary type system for our object language that is sufficient for reporting
helpful type errors (using dynamic type checking), but not static type checking. Remarkably, much
of the feedback a programmer could get from a static type checker can be provided by dynamic
type checking during evaluation because the code can be evaluated continuously and evaluation
continues past type errors without entering inconsistent states. However, type systems remain
useful for proving properties for all branches in the program control flow. An excellent example has
been developed by Cyrus et al. [15].

Currently, our approach only ensures an error when an application or addition term cannot be
reduced, but it does not report on all the type errors that it could theoretically find because this
was not a priority for this thesis.

Definition 6.2.2 (Type matching). Recall that τ→ is the type of functions and τnum the type of
numbers. An expression de does not match the type τ→ (written τ→ : de) if and only if is it of
the form n or del +der. An expression does not match the type τnum if and only if it is of the form
(x,λmv.me). All other expressions match both types.

We implement type matching with the function match : DExpr→ Type→ RInf:

match(de, τ) = if (τ = τ→ ∧ (de = n ∨ de = del + der)) ∨ (τ = τnum ∧ de = (x,λmv.me))
then τ : de
else ε

(6.6)

6.2.6 Explicit sharing with references

As discussed in section 6.2.4, we need to prevent duplication of collected runtime information
due to sharing. We cannot simply pick one of the occurrences of a shared variable because the
variables can occur in different branches of interpretation and we cannot always know ahead of
time whether any branch will always be evaluated. We first attempted to deduplicate runtime
information based on variable names, when an expression that joins interpretation branches (such
as addition and application) is interpreted, but this approach turned out to be complex and error-
prone. In our final approach, we thread a state σ : Σ through the interpretation process that
carries a counter which we can use to create unique references φ : Φ. These references are used
to create an additional level of indirection in the map from variables to values. The environment
that is distributed across interpretation branches (ρ) maps from variable names to references, thus
preserving standard scoping rules. The state that is threaded through the interpretation also
carries the values (with optional runtime information) these references refer to. When a variable is
evaluated, any associated runtime information is added to the interpretation output and removed
from the state. Thus, subsequent evaluation will find no associated runtime information.

This approach solves the problem, but has a few drawbacks. Firstly, branches of interpretation
that are conceptually independent, e.g. in del+der, become operationally dependent. Furthermore,
it detracts from the initial beauty of our general approach to evaluation because we need to manage
sharing ourselves instead of inheriting it from the meta-language. Moreover, we now need to be
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explicit in the locations where laziness is required in the denotation of expressions. Specifically,
instances of de in de are turned into references to partially applied instances of the interpretation
function. These instances have already received an environment ρ, but not yet a state σ. We
call these instances interpretation closures and they have the type Σ → (DExpr,RInf,Σ). This
is necessary to preserve laziness of the object-language because σ will become undefined if the
computation of de diverges. Incorporating these closures into the semantic representation also
allows us to perform further evaluation of collected runtime information without restarting.

Additionally, the type of meta-language functions in the denotation of object-language functions
is changed to Φ→ Σ→ (DExpr,RInf,Σ) where φ : Φ now represents a reference to the argument of
the object-language function.

In the redefinition of the interpretation function below, we assume the following operation on
the state:

• newState : Σ, which creates an empty state.

• store : (Σ → (DExpr,RInf,Σ)) → Σ → (Φ,Σ), which stores an interpretation closure in the
given state and returns a reference to the closure.

• retrieve : Φ → Σ → (DExpr,RInf,Σ), which retrieves the interpretation closure associated
with the given reference and replaces it with λσ.(de, ε, σ) where de is the expression the
retrieved interpretation closure produces.

We redefine the interpretation function JeK : (V → Φ) → Σ → (DExpr,RInf,Σ) in equation 6.7
and discuss the various cases below.

In the case of variables, we check if the variable is in the environment using the domain (a.k.a.
keys) in the map ρ. If it is in the environment, we retrieve the expression and runtime information
associated with it. Otherwise, the variable is returned unchanged along with a free variable error.

The cases for abstraction terms and numbers work similarly to the initial version.
In the case of application terms, ef is interpreted first (in the first auxiliary definition). The

state σf this results in is used to store the interpretation closure of the argument (JeargK(ρ) is
partially applied; a shorthand for λσarg.JeargK(ρ, σarg)). If ef was interpreted to a meta-language
function f , we obtain the interpreted body of the function and the associated runtime information
by applying f to the reference and state that resulted from the store operation. Else, the application
term is reconstructed with inf and the reference to the interpretation closure of the argument. If
match determines there is a type error, this is included in the result.

The case for addition term is quite verbose, but not very complicated. The left and right
summands are interpreted in order in the first two auxiliary definitions. If both interpretations result
in numbers, the sum of the numbers is returned along with the combined runtime information that
resulted from the interpretations. Otherwise, the return value is the same, except for the addition
term being reconstructed from the interpreted summands and any type errors are included in the
returned errors.

In the case of construction sites, the interpretation closures of any complete nodes are stored
in the state in order and the resulting references replace the corresponding complete nodes in the
construction site.

We left out the recording of interpretations from this equation to reduce clutter and because
it happens in the same way for all cases. The expression is first interpreted using the equations
above and if the cursor was on the given expression, its denotation and environment are added to
the collection of recorded interpretations.
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JeK : (V → Φ)→ Σ→ (DExpr,RInf,Σ)

JxK(ρ, σ) =

{
retrieve(ρ(x), σ) x ∈ dom(ρ)

(x, x9, σ) otherwise

Jλx .
= ebodyK(ρ, σ1) = ((x,λ(φ, σ2).JebodyK(ρ[x 7→ φ], σ2)), σ1)

Jef eargK(ρ, σ1) =

{
f(φarg, σstore) π1(inf ) = f = λmv.me

(inf φarg,match(f, τ→) rcif , σstore) otherwise
where

(inf , rif , σf ) = Jef K(ρ, σ1)
(φarg, σstore) = store(JeargK(ρ), σf )

JnK(ρ, σ) = (n, ε, σ)

Jeleft + erightK(ρ, σ) =

{
(n1 + n2, rileft ∪ riright, σright) inleft = n1 ∧ inright = n2

(inleft + inright, riall, σright) otherwise
where

(inleft, rileft, σleft) = JeleftK(ρ, σ1)
(inright, riright, σright) = JerightK(ρ, σleft)
riall = rileft ∪ riright ∪match(inleft, τnum) ∪match(inright, τnum)

J c00..c
0
i0 e0 .. en c

n+1
0 ..cn+1

in+1
K(ρ, σ) = ( c00..c

0
i0 φ0 .. φn c

n+1
0 ..cn+1

in+1
, ε, σn) for

n ≥ 0
0 ≤ l ≤ n+ 1
il ≥ 0

where
(φ0, σ0) = store(Je0K(ρ), σ)
(φk, σk) = store(JekK(ρ), σk−1) for 1 ≤ k ≤ n

(6.7)
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Another difference with the implementation is that the implementation uses singleton construc-
tion sites to point out where in the resulting expression type errors were encountered. For example,

Jρ, σK(0 1) would result in 0 1 (after reification) with the error that 0 could not be matched
with τ→. As mentioned before, these construction sites are merely used for annotations and may
be substituted for a different method of annotation, as long as it clearly shows any nesting of the
annotations (which red underlining usually does not).

6.2.7 Presenting runtime information

In this section, we show how the reification operation from section 6.2.3 needs to be adapted to
account for the references and interpretation closures now included in the denotation and preserve
laziness in the presentation of the collected runtime information.

Rendering of reified expressions is limited by a maximum depth because the user is often only
interested in the part close to the root of the expression and rendering would diverge in the case
of expressions without normal forms otherwise. However, to retrieve expressions and runtime in-
formation from the references in the expression returned from the interpretation function, we have
to thread the final interpretation state through the reification operation as well. If all references in
an expression need to be eliminated (as the type of ↓ demands), this imposes an evaluation order
on the subexpressions that is depth first. Consequently, reification may diverge due to reification of
subexpressions far from the root expressions and therefore prevent the programming environment
from showing other parts of the expression or even the root expression itself, despite the rendering
depth limit. For example, if normalization of the expression in the first complete node in a con-
struction site diverges, the construction site can never be rendered. If we define a non-tail-recursive
function such as the Fibonacci sequence and apply it to a construction site, we get an infinitely
large expression because evaluation continues after failed reductions and the recursive function ap-
plications will keep being substituted for instances of the function body. In this case, rendering
would diverge at the term that adds the two previous numbers in the sequence together.

Instead, we want to enable arbitrary exploration of the reified expression, where rendering only
diverges when the computation of a specifically requested WHNF diverges. Because there was too
little time to develop a proper user interface for this, we only allow the user to specify the rendering
depth and develop a reification approach that can be generalized for arbitrary exploration.

Our solution is to enable partial reification of an expression. This requires a third representation
for expressions where the representation is allowed to “switch” at any sub-expression. The reifica-
tion function can then be modified to reify expressions up to a specified depth and an additional
reification function that continues reification for a partially reified expression can be defined.

We give the notation for the partially reified representation below:

RExpr re ::= x | n | (re) | λx .
= re | re re | re+ re | rcm | ddee

RCsMt rcm ::= rit∗

RCsIt rit ::= c | RExpr
(6.8)

This representation is isomorphic to the syntax representation, except for the extra denotation
form. Using this form, the partially reified representation can switch to the semantic representation
at any (sub-)expression.

The partial reification function ↓i de : N → Σ → (RExpr,RInf,Σ) (with subscript i for initial)
also collects runtime information from retrieved references. In its definition, we use an auxiliary
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function ↓ic ic : N → Σ → (RExpr,RInf,Σ) that combines the retrieval and reification of an
interpretation closure. We defined these functions in equations 6.9 and 6.10, respectively.

In general, ↓i de goes into recursion on the subexpressions of de, threading the state left-to-right
and collecting the resulting runtime information. However, the depth n is decremented with each
recursive application of the function, until it reaches 0. In that case, we use the new form of the
partially reified representation to switch to the semantic representation.

In the cases where interpretation closures occur in the argument denotation, these are reified
with the function defined in equation 6.9. In the case of lambda terms, we first create a reference
to a fresh variable (first auxiliary definition) and then obtain the reified body of the meta-language
function by reifying the interpretation closure obtained by applying the meta-language function to
the new reference (second auxiliary definition).

The additional reification function ↓c re : N → Σ → (RExpr,RInf,Σ) that continues reification
of an expression that was already partially reified, is very similar to the initial reification function,
so we omit its formal definition. It works analogously in all cases but those of the representation
switch and lambda terms. In the case of lambda terms, it simply goes into recursion on the body. In
the case of the representation switch, we use the initial reification function to continue reification.

Variable disambiguation in runtime information We will now discuss the first complication
from the list from section 6.2.4. This approach of collecting runtime information complicates vari-
able disambiguation if this depends on the variables in scope because the scope of expressions in
type errors is not included in the type errors. In our case, it is not an option to start variable disam-
biguation with an empty scope for these expressions because we need the set of free variables as an
initial environment for disambiguation and we cannot obtain this from the semantic representation
without reifying it.

Instead, we separate variable disambiguation from the reification step and move it to the inter-
pretation step where the scope is naturally available. Disambiguation is then performed after every
beta reduction, but only on the runtime information. Disambiguation on the main expression can
still be performed during reification, which is more efficient.

We omit a redefinition of the interpretation function because we do not think this is a particularly
elegant solution and we do not see it as a core part of our approach.

6.2.8 Non-termination tolerance

Non-termination issues are some of the hardest to find the cause of because there is no error-message
or output that can be used to reduce the number of places the error could be. In the previous section,
we described a technique to isolate such issues, but this technique does not provide any insights
into the issues themselves when a term lacks a WHNF.

To provide this, we applied a second technique we call fuel-limited evaluation depth. The
technique itself is nothing innovative: we start interpretation with a configurable amount of “fuel”,
which is “burned” with every reduction or recursive function application. When the fuel runs out,
we return a failed application as when type errors are encountered. This guarantees termination
by limiting the only two sources of divergence.

However, instead of threading the number of fuel units remaining through the interpretation
function like a state, we distribute it like an environment. This prevents any diverging computation
from burning all the fuel and causing “false positive” out-of-fuel errors in expressions that are
evaluated later.
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↓ic ic : N→ Σ→ (RExpr,RInf,Σ)

(↓ic ic)(n, σ1) = (re, riin ∪ rire, σre)
where

(de, riin, σin) = ic(σ1)
(re, rire, σre) = (↓i de)(n, σin)

(6.9)

↓i de : N→ Σ→ (RExpr,RInf,Σ)

(↓i de)(0, σ) = (ddee, ε, σ)

(↓i x)(n, σ) = (x, ε, σ)

(↓i (x, f))(n, σ1) = (λy
.
= rebody, ri, σre)

where
(φy, σstore) = store(λσy.(fresh(x), ε, σy), σ1)
(rebody, ri, σre) = (↓ic (f(φy)))(n− 1, σstore)

(↓i (def icarg))(n, σ1) = (ref rearg, rif ∪ riarg, σarg)
where

(ref , rif , σf ) = (↓i def )(n− 1, σ1)
(rearg, riarg, σarg) = (↓ic icarg)(n− 1, σf )

(↓i n)(n, σ))(n, σ) = (n, ε, σ)

(↓i (eleft + eright))(n, σ) = (releft + reright, rileft ∪ riright, σright)
where

(releft, rileft, σleft) = (↓i eleft)(n− 1, σ1)
(reright, riright, σright) = (↓i eright)(n− 1, σleft)

(↓i c00..c0i0 de0 .. dem cm+1
0 ..cm+1

im+1
)(n, σ) = ( c00..c

0
i0 re0 .. rem cm+1

0 ..cm+1
im+1

, riall, σm) for
m ≥ 0
0 ≤ l ≤ m+ 1
il ≥ 0

where
(re0, ri0, σ0) = (↓i de0)(n− 1, σ)
(rek, rik, σk) = (↓i dek)(n− 1, σk−1) for 1 ≤ k ≤ m
riall = ri0 ∪ .. ∪ rim

(6.10)
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Since this is a common and simple technique for guaranteeing the termination of algorithms
in general, we omit a formal redefinition of the interpretation function. There is one complicating
interaction between this technique, call-by-need semantics and recursive binders, which will be
described later in this section.

This alternate mode of evaluation is especially useful in our case because it enables partial
normal forms that can be used to find the source of the non-termination issue. Specifically, the
failed reduction will point out the general location of the issue because the fuel will run out in the
non-terminating loop (if there was enough fuel to reach it). Furthermore, the collected runtime
information can be used to trace the control flow of the program and see what values may be
causing the issue.

However, when the expression does have a WHNF, but no full normal form, the source of the
issue is not pointed out as clearly. It would be only recognizable as a repeating pattern in the
partial normalization result.

This technique supersedes the non-termination tolerance technique from the previous section,
but enabling it permanently can be detrimental because there can be false positives with long-
running programs. In our programming environment, we combine both modes of evaluation by
running the limited variant in parallel if the unlimited one does not provide results within half a
second (this is sufficient for small examples, but of course, this should be configurable in a mature
programming environment). Therefore, the first technique remains useful.

Additionally, this second technique can be useful in more general cases than non-terminating
computations. The programming environment has the option to start with limited evaluation by
default, which provides a crude method for exploring the computation of any value. This makes
the technique useful for generally gaining an understanding of unfamiliar programs and debugging
programs that do not generate the desired results, but also no errors. The last example in 4 shows
an example of this use case.

As mentioned earlier, there is a complicating interaction between this technique, call-by-need
semantics and recursive binders. Call-by-need semantics demands that when a value is computed, it
is reused in all places it is referenced. Therefore, when (part of) the value of a recursive expression
is computed, it should be reused in that expression.

At the same time, we limit recursion by burning one unit of fuel with every recursive application
and when the fuel runs out, this should result in a failed application.

These two properties are in conflict because the latter implies a change in the value that is
supposed to be constant according to the first. Our current solution is to take the performance
penalty for not sharing the value in recursive definitions when this alternate mode of evaluation is
used. More complicated approaches to guaranteeing termination may allow for increased sharing,
but we have not found the time to look into this.

6.2.9 Maintaining responsiveness

The previous sections have described the theoretical issues we encountered along with their so-
lutions. Aside from these problems, there were some engineering challenges also deserve some
discussion.

First, we have to ensure edit actions and evaluation can be interleaved because the environment
would otherwise be unresponsive during evaluation (possibly forever if the evaluation does not
terminate). We solve this by using separate threads (specifically, Haskell runtime system (RTS)
threads) for edit actions and evaluation and allowing them to run concurrently. An edit action stops
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the current evaluation (if any) and (re)starts it with the updated program/changed configuration.
To ensure the displayed evaluation results belong to the currently displayed program, we keep track
of the number of edit actions in a version number and only display evaluation results when their
source version number matches the current number.

Secondly, long-running evaluations can start to consume a significant amount of memory, which
can slow down the entire computer or even lead the operating system to terminate the process.
Ideally, the evaluation is performed by a separate process of which the memory usage can be
monitored and which can be terminated separately from the programming environment. However,
this requires a significant amount of platform-dependent code and is not even possible when the
environment runs in a web browser.

Instead, we keep everything in a single process and set a memory limit with Haskell’s -M RTS
argument. When we reach the limit, we catch the exception that gets thrown and stop the evaluation
thread, which should free enough memory to continue operating.
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Chapter 7

Related work

Structure editors and live programming have been the subject of research for many years now. In
this chapter, we discuss the similarities and differences between our work and the related systems
we have referred to throughout this thesis.

7.1 Grammar cells

The issues with strict structural editors are also recognized by Voelter et al.[24]. In response, they
develop an approach for the development of projectional editors based on a new concept named
grammar cells. They show that this approach yields a text-like editor experience similar to Frugel.
Conceptually, the main difference is how editing in their system is directed by the specific syntax of
the document, while in Frugel editing is directed only by the general tree structure of the document.

For example, their system would be aware that a newly entered + belongs to the language-
specific notion of a binary expression and would modify the AST accordingly. Frugel on the other
hand, only regards it as a character and inserts it in the right place while preserving most of the
AST. What this means for the structure of the document is left for the parser to decide.

The edit actions emulating a text-editor like experience are dependent on the type of grammar
cell under the cursor in Voelter et al.’s approach, which demands special grammar cells for specific
edit actions in cases like splittable . This grammar cell allows its child to be split in two, for
example in the case of changing 11 into 1+1.

Contrastingly, Frugel supports any edit action on any type of AST node by construction, thus
eliminating the possibility of missing one.

Additionally, our editor is a more general system because it allows for the integration of any
(existing) parser, while the language developer is limited to the parser features supported by the
rule grammar cell in Voelter et al.’s approach. For example, look-ahead does not seem to be
supported yet.

Furthermore, the grammar-cell-based editor is not generally error-tolerant. It solves the problem
of inflexibility for the case of matching parentheses with a special brackets grammar cell, which
allows for the occurrence of an unmatched bracket by storing it in an annotation node. This can
be regarded as a specific instance of Frugel’s construction site.

The largest user-facing advantage of their approach is the support for language composition.
This is a result of how the programmer is forced to resolve ambiguities in the grammar when
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entering an expression. Frugel has no such mechanism and simply relies on the provided parser
to resolve ambiguities, but does integrate with existing text-based more easily because handling of
plain text is already built into the system.

7.2 Proxima

Proxima [19] is “a presentation-oriented editor for structured documents”. In this case, presentation-
oriented means supporting edit actions targeting the presentation of a document, i.e. text in the
case of a source code editor.

Proxima employs the Utrecht University’s attribute grammar system1 to support error-correction
during parsing. However, all editor functions depending on the structure of the document are dis-
abled in the presence of a parse error because this system may generate spurious errors or perform
unintended corrections.

7.3 Lamdu

Lamdu [12] is a live programming environment with very similar goals to Frugel. It contains a strict
structure editor that is tuned to support left-to-right writing of code in Lamdu’s internal language
and inserts holes where necessary. In fact, Lamdu goes even further than syntactic correctness in
its strictness: it attempts to keep ill-typed expressions from being constructed.

For example, if we attempt to insert a number where a function is expected, the expression is
transformed to an application term with a hole for the argument. This term can then be typed as
a free type variable. However, the number is inserted in the function position of the application
term, which still results in a type error.

In our (admittedly limited) experience with the editor, this makes the code quite hard to change
because if magnifies the tunnelling problem.

Lamdu supports type inference for and evaluation of incomplete programs. Holes are typed as
free type variables and evaluation continues around holes used as operands in binary operations
in a similar fashion as in Frugel. However, evaluation is not continued around hole arguments in
application terms or under partially applied lambda terms and function values are not displayed.
Additionally, evaluation exits with an exception if a certain stack size is exceeded. Together, these
limitations, avoid the presentation and non-termination issues we solved in sections 6.2.3, 6.2.7 and
6.2.8. Consequently, their system misses some of the benefits we describe in the later examples in
chapter 4.

Type mismatches and evaluation results are displayed in a stack under expressions, where each
layer spans the corresponding AST node. This “inline” view shows more runtime values than our
approach (with a separate panel for the focused expression only), but takes up a lot of space with
larger values.

If a function is applied multiple times, controls appear to cycle through the different evalua-
tions. They may avoid the runtime information duplication problem we tackled in section 6.2.6 by
using strict calling semantics in the object-language, but we failed to find any documentation that
confirms.

Remarkably, Lamdu supports I/O in the object-language by requiring explicit confirmation
before I/O actions are executed. When the code is modified, the recorded runtime values disappear

1https://hackage.haskell.org/package/uuagc

62

https://hackage.haskell.org/package/uuagc


and the action needs to be confirmed again. This approach resolves the safety issues tied to
automatically running I/O actions, but at the cost of liveness. Nonetheless, it may serve as a
foundation for more advanced approaches that preserve liveness better.

7.4 Hazel

Hazel [15] [14] is the most similar programming environment to our one at the time of writing. We
have previously worked on Hazel and it has been a significant inspiration for our work.

It is based on a formal structure editor calculus that also aims to preserve the interface of text
editors. However, the structure editor also suffers from the tunnelling problem because it is strict
and the editor calculus is specific to their internal language. We built our programming environment
from scratch to see if these problems can be solved with a different foundation.

Notably, this formal specification support the definition of various structure editor properties
such as reachability (that is possible to reach any term in an expression through the defined move-
ment actions), sensibility (that all expressions created through the editor actions can be typed) and
continuity (that all typeable expressions can be evaluated to a kind of normal form). They also
verify their calculus regarding these properties by providing mechanized proofs in Agda.

In further contrast to our work, Hazel includes a bidirectional type system that internalizes
incomplete programs and type errors with empty and non-empty type holes. Initially, we wanted
to diverge from this approach by implementing a unification-based type system, but this idea was
abandoned due to a lack of time and the discovery that a live interpreter can provide much of the
same feedback.

Hazel also automatically evaluates programs and makes evaluation continue around holes and
inside ill-typed expressions. In other words: their evaluation process is tolerant of type errors and
incomplete programs. It displays runtime values in a separate panel, but only for variables that are
in scope at a selected hole (instead of at any selected expression), which limits the use of runtime
values. Similarly to our recording of evaluations, they track hole closures. The duplication of this
“collected runtime information” we encountered in our system is avoided by their choice of strict
object-language calling semantics.

Much like Lamdu, their system does not continue evaluation under partially applied lambda
terms, thus avoiding the presentation and non-termination issues we solve in 6.2.3, 6.2.7 and 6.2.8.
However, their system completely freezes when expressions without normals form are encountered.

Remarkably, they also define a fill-and-resume operation that allows evaluation to continue from
its previous result when a hole is filled, which may improve responsiveness of the programming
environment significantly when working with larger programs.

7.5 Grounds for increased developer productivity in live pro-
gramming environments

There definitely is some allure to live programming environments because they have been the
subject of research since at least 1990 [21]. Crowdfunding for a live programming environment
called LiveTable received $316,720 from more than 7 thousand people in 2014 [8].

However, there have been almost no empirical studies that verify the predicted productivity
gains as far we know. We are only aware of a study by Krämer et al. that found participants
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working in live programming environments fixed bugs faster and switched between debugging and
editing more frequently than those working in the same environment with live programming features
disabled. Sadly, their study only had 10 participants.

We think this lack of empirical studies has two main reasons: (1) there is a lack of mature live
programming environments and (2) productivity is hard to measure. We hope interest in this area
increases and enough resources become available that these issues can be resolved.

Until then, the fact that many people think live programming environments are a good idea will
have to be enough.
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Chapter 8

Future work

The programming environment we developed is a promising prototype, but we should be weary of
the assumptions we made while designing it. There are many hurdles that still need to be overcome
before it can become part of widespread development practices.

In this chapter, we discuss these assumptions and hurdles and what future work is required to
validate or remove them.

8.1 Supporting I/O

One clear hurdle that needs to be overcome before our programming environment can be used
for real-world programs is the support of I/O in the object-language. This is not trivial, because
programs are run automatically and running I/O actions with unfinished parameters can have
disastrous consequences.

We already mentioned Lamdu’s solution to ask for confirmation from the programmers before
running I/O operations, but this severely limits the use of live programming features. This could be
mitigated by allowing individual operations or entire calls to I/O performing functions in external
libraries to be permanently marked as safe. This option of course still carries some risk because
programs can behave in unexpected ways during development. This risk grows with the size of the
project and the number of people working on it. Nonetheless, it may be the best solution for the
prototyping phase of a project.

For more mature projects, a better solution would be to require and help the programmer define
container images that only provide the I/O operations required. A program can then run in this
container in isolation from the rest of the system. This brings “the outside world” under control
of the programming environment, which allows it to be easily reset in the event of unintentional
consequences of I/O operations and improves reproducibility.

In fact, setting up test environments like this is already common software development practice,
rising hand-in-hand with remote automated testing and continuous integration practices.

In summary, this approach requires an initial up-front investment and a lower continuous in-
vestment of time and effort, but the benefits are already considered to be worth it.
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8.2 Performance on larger programs

Real-world programs are much larger than the ones anyone will probably write in our programming
environment. Until more extensive languages are supported, we cannot use any existing programs
either.

Our programming environment might not perform well enough on two fronts: editing and eval-
uation. Currently, our structure editor will always be slower than a parser in an environment with
a text editor because the structure editor reparses the entire program at least once after every edit.
If there are construction sites in the program, the number of reparses increases exponentially, as
discussed in section 5.4. Use of a GLR or GLL parser may mitigate this, but this would significantly
reduce the number of existing parsers that can be used in our programming environment. Incre-
mental parsers may also offer a sufficient performance improvement because there is a significant
overlap in the contents of construction site variations.

Alternatively, the problem may be mitigated by employing a technique common in error-
recovering parsers: recognizing non-terminals that delimit certain AST nodes. For example, by
analysing a language’s grammar, we may find that identifiers followed by an =-sign cannot occur
in expressions. This syntax uniquely belongs to definitions, which provides an outer bound on
what characters can be relevant to a definition with a syntax error. This allows for the AST to
be “partitioned” in smaller sections that define limits on the effects of edits. Now, we only have
to linearize and reparse the text in this section to find the effect of an edit. In most cases, these
sections should be small enough that our approach is feasible. In this case, our structure editor can
compete with incremental parsers regarding performance.

On the evaluation front, we see foresee the issue that running the program up to the point of
interest simply takes too long, either because of computational intensity are blocking I/O actions.
This could be mitigated by creating snapshots of the running program that can be used as starting
points after edits. Another option may be to employ “editing closures” similar to Hazel’s hole
closures that allow evaluation to continue from a previously computed partial evaluation result.

We are aware that the possibility of performing live updates to running programs is also being
researched (see for example the taxonomy by Giuffrida and Tanenbaum [7]), but we think the
domain of programs this approach applies to is too narrow.

However, if it turns out this problem cannot be mitigated adequately, the approach to live
programming we developed may still be useful in educational settings, where example are naturally
small.

8.3 Integration with mainstream programming environments
and other text-oriented tools

Structure editors are notorious for being incompatible with traditional programming environments
and other text-oriented tools. Since our approach includes a parser by definition, storing code as
text and reparsing it after it has been modified by external tools is no problem, as long as there
are no syntax errors. If there are any, they will simply have to be resolved before the IDE features
can serve their purpose, just like in traditional IDEs.

It would even be possible to integrate with text oriented tools built into the IDE, by finding the
bounds on the text modified and only linearizing and reparsing the affected AST nodes. However,
the purely textual presentation of code in traditional IDEs may be a problem in itself. Often,
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this presentation uses text field widgets that are built into the IDEs GUI framework or even the
operating system itself. These widgets typically only allow for limited markup of the text and are
incapable of showing nested and overlapping annotations like those we use for construction sites in
a clear way.

We do not see these changing easily, but we think there is a way to generalize the traditional
red underline that would also satisfy our requirements. If these widgets supported additional
composable patterns in additional to the traditional zigzagging pattern, these patterns could be
combined in the same line where annotations overlap. For example, the span of one construction
site could be indicated by a line with regularly spaced circles and another with regularly spaced
diamonds. Where the construction sites overlap, a line with both circles and diamonds would be
displayed.

We think this would still be less clear than the presentation we used in our implementation, but
the compromise could be worth it to increase adoption.

8.4 Improved interface for runtime values

There are also remaining challenges regarding interface design. The configurable rendering depth
keeps the size of displayed values in check, but does little to help the programming find the parts
of interest.

Developing an intuitive interface that supports interactive exploration of runtime values where
irrelevant parts are elided automatically is a very challenging problem that deserves its own research
project.

Furthermore, the exploration of the computation of instead of just the results for which we
achieved crude support through fuel-limited evaluation deserves further development. Our system
only allows very limited control of which reductions should be prevented. We think that allowing
programmers to control this more precisely could make this into a very valuable tool for debugging.

8.5 Improved explicit empty construction sites

The grammar defined for our object-language in section 5.5 allows manual insertion of empty con-
struction sites with the . . . -syntax. However, these construction sites disappear when a linearization
variation is found where it is inlined and it does not cause a parse error, which is counter-intuitive.

This could be resolved by distinguishing construction sites inserted by the structure editor and
those inserted using the syntax. The disappearance of manually inserted construction sites can
then be prevented by only inlining the former in the linearization step.

However, this would also require that manually inserted construction sites can be removed using
a “delete” edit action. Future work could look into how this problem is best resolved.
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Chapter 9

Conclusion

The question that inspired this thesis is “are we live yet?”, an impatient inquiry into the lack of live
programming features in mainstream software development practice. This question turned into:
what are the remaining issues that prevent support for live programming from being adopted by
mainstream development environments? With this thesis, we tackled the issues of limited domains
and error-intolerance and demonstrated the powerful synergy between error tolerance and live
programming.

As a first step, we presented the concept of construction sites and give a detailed description of a
structure editor that uses these to maintain a structured representation of code without sacrificing
usability.

To show that this constitutes a sound technical basis for continuously available error-tolerant
IDE services, we also developed a formatter and live programming support. We presented a formal-
ization of the error-tolerant dynamic semantics underlying the latter and discuss fundamental issues
regarding non-termination and the combination with a call-by-need reduction strategy. Addition-
ally, we find that our solutions to the issues regarding non-termination can assist the programmer
with finding the source of non-termination issues, which is notoriously difficult in traditional pro-
gramming environments.

Together, this answers the precise research question:

Is it possible to keep IDE services functioning properly and provide useful runtime information
continuously, regardless of errors or application domain, based on (1) a structured representation

of programs that incorporates construction sites and (2) formal error-tolerant semantics?

As is also demonstrated by the examples in chapter 4, the answer is yes. However, our approach
does not perform optimally when implemented with standard text fields and it is not yet clear
that it is performant enough for real-world application. Additionally, the issues of safe I/O and
the design of an intuitive interface for runtime values still pose a barrier for any live programming
environment.

Because of these issues, it is not yet certain that our approach generalizes to larger programs
and real-world applications, but we do not think any of the issues pose an insurmountable challenge.
If our approach turns out to be infeasible for these applications, we hope our contributions may
inspire future work that finds one that is.
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[25] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erdweg, and Thorsten
Berger. Efficient development of consistent projectional editors using grammar cells. In SLE
2016 - Proceedings of the 2016 ACM SIGPLAN International Conference on Software Lan-
guage Engineering, co-located with SPLASH 2016, pages 28–40. Association for Computing
Machinery, Inc, 10 2016. Similar ideas to Hazel, but less formal and doesn’t support proving
formal properties.

[26] Young Seok Yoon and Brad A. Myers. A longitudinal study of programmers’ backtracking. Pro-
ceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
pages 101–108, 2014.

70



Appendix A

Decomposition for ASTs with
multiple node types

Allowing for multiple node types requires generalizing the edit loop significantly. We first define
some types:

newtype CstrSite n = CstrSite [Either Char n]

data Node = ExprNode Expr | DeclNode Decl | WhereNode WhereClause

data Expr

= Variable String
| Abstraction String Expr

| Application Expr Expr

| Sum Expr Expr

| ExprCstrSite CstrSite

data Decl = Decl String Expr | DeclCstrSite CstrSite

data WhereClause = WhereClause [Decl] | WhereCstrSite CstrSite

data Program = Program Expr WhereClause | ProgramCstrSite CstrSite

In this example, Program is the root of the AST. The purpose of Node is to collect all node
types into a sum type for inclusion in construction sites, i.e. CstrSite Node.

To allow us to ensure all types of node in an AST have the same type of node (and therefore
construction site), we introduce an open type family:

{−# LANGUAGE TypeFamilies #−}

type family NodeOf a :: *

type instance NodeOf (ACstrSite a) = a

type instance NodeOf Node = Node
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type instance NodeOf Identifier = Node

type instance NodeOf Expr = Node

type instance NodeOf Decl = Node

type instance NodeOf WhereClause = Node

Using this type family, we can now define a more general version of Decomposable :

{−# LANGUAGE UndecidableInstances #−}
{−# LANGUAGE RankNTypes #−}
{−# LANGUAGE FlexibleContexts #−}
{−# LANGUAGE FlexibleInstances #−}
{−# LANGUAGE DefaultSignatures #−}

class (FromNode a, SetCstrSite a) => IsNode a

class FromNode a where
fromNode :: a -> NodeOf a

class NodeOf n ~ NodeOf (NodeOf n) => Decomposable n where
traverseComponents :: Applicative f

=> (Char -> f Char)
-> (forall n'.

(Decomposable n', IsNode n', NodeOf n ~ NodeOf n')
=> n'
-> f n')

-> n

-> f n

conservativelyDecompose :: Int -> n -> Maybe (Int, CstrSite (NodeOf n))

default conservativelyDecompose :: FromNode n

=> Int
-> n

-> Maybe (Int, CstrSite (NodeOf n))

conservativelyDecompose cstrSiteOffset n = case cstrSiteOffset of
0 -> Just (0, singletonCstrSite)

l | l == length (toList $ decompose n) -> Just (1, singletonCstrSite)

_ -> Nothing
where

singletonCstrSite = fromList [ Right $ fromNode n ]

First, due to the recursive nature of decomposition, applying NodeOf twice may not change the
node type (NodeOf n ~ NodeOf (NodeOf n)). Otherwise, requiring an instance of some type
class C for NodeOf n for some n, would require an infinite number of instances (C (NodeOf n),
C (NodeOf (NodeOf n)), etc...).

Secondly, the function gets a rank 2 type to allow for processing of any kind of node, while
maintaining the node’s type. We do require that these nodes are instances of IsNode , which simply
requires an instance of SetCstrSite and FromNode , the latter of which allows for converting a
node to its NodeOf type.

Finally, the Decomposable instance for Program overrides the default definition for
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conservativelyDecompose to always return Nothing (i.e. conservativelyDecompose _ _

= Nothing.
The simple methods from IsNode are all that is required by the general part of the decomposition

step (aside from the Decomposable instances, which stay the same):

modifyNodeAt ::

(MonadError (InternalError p) m, Decomposable p, SetCstrSite p)

=> (Int -> CstrSite (NodeOf p) -> m (CstrSite (NodeOf p)))

-> Int
-> p

-> m p

Note that we distinguish the type of the root of the AST this function is called on p and any
node in the AST n. This is also due to Program not being an instance of FromNode .

Finally, we can show where the second argument of SetCstrSite is required. The SetCstrSite

instance of Node needs to see from the old node which type of node it should create. The instance
is given below:

instance SetCstrSite Node where
setCstrSite cstrSite = \case

ExprNode expr -> ExprNode $ setCstrSite cstrSite expr

DeclNode expr -> DeclNode $ setCstrSite cstrSite expr

WhereNode expr -> WhereNode $ setCstrSite cstrSite expr

The last place where the presence of multiple types of AST nodes needs to be taken into
account is in the Parseable class. To parse nested construction sites of any type, we add the
anyNodeParser method. This parser should succeed on any type of node. The complete class
then looks as follows:

class Parseable p where
type ParserOf p :: * -> *

type ParseErrorOf p :: *

programParser :: (ParserOf p) p

anyNodeParser :: (ParserOf p) (NodeOf p)

runParser :: (ParserOf p) n

-> ACstrSite (NodeOf p)

-> Either (NonEmpty (ParseErrorOf p)) n

errorOffset :: Lens' (ParseErrorOf p) Int
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